import base64 import json import os from io import BytesIO from typing import Any, Dict, List, Optional, Tuple, Union import requests import torch from PIL import Image from torch import nn from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer class Transformer(nn.Module): """Huggingface AutoModel to generate token embeddings. Loads the correct class, e.g. BERT / RoBERTa etc. Args: model_name_or_path: Huggingface models name (https://huggingface.co/models) max_seq_length: Truncate any inputs longer than max_seq_length model_args: Keyword arguments passed to the Huggingface Transformers model tokenizer_args: Keyword arguments passed to the Huggingface Transformers tokenizer config_args: Keyword arguments passed to the Huggingface Transformers config cache_dir: Cache dir for Huggingface Transformers to store/load models do_lower_case: If true, lowercases the input (independent if the model is cased or not) tokenizer_name_or_path: Name or path of the tokenizer. When None, then model_name_or_path is used """ def __init__( self, model_name_or_path: str, max_seq_length: int | None = None, model_args: dict[str, Any] | None = None, tokenizer_args: dict[str, Any] | None = None, config_args: dict[str, Any] | None = None, cache_dir: str | None = None, do_lower_case: bool = False, tokenizer_name_or_path: str = None, ) -> None: super().__init__() self.config_keys = ["max_seq_length", "do_lower_case"] self.do_lower_case = do_lower_case if model_args is None: model_args = {} if tokenizer_args is None: tokenizer_args = {} if config_args is None: config_args = {} config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir) self._load_model(model_name_or_path, config, cache_dir, **model_args) if max_seq_length is not None and "model_max_length" not in tokenizer_args: tokenizer_args["model_max_length"] = max_seq_length self.tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args, ) # No max_seq_length set. Try to infer from model if max_seq_length is None: if ( hasattr(self.auto_model, "config") and hasattr(self.auto_model.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length") ): max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length) self.max_seq_length = max_seq_length if tokenizer_name_or_path is not None: self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__ def forward( self, features: Dict[str, torch.Tensor], task_type: Optional[str] = None ) -> Dict[str, torch.Tensor]: """Returns token_embeddings, cls_token""" if task_type and task_type not in self._lora_adaptations: raise ValueError( f"Unsupported task '{task_type}'. " f"Supported tasks are: {', '.join(self.config.lora_adaptations)}." f"Alternatively, don't pass the `task_type` argument to disable LoRA." ) adapter_mask = None if task_type: task_id = self._adaptation_map[task_type] num_examples = 1 if isinstance(features['input_ids'][0], list): # If input_ids[0] is a list, it means multiple inputs (list of texts) num_examples = len(features['input_ids']) adapter_mask = torch.full( (num_examples,), task_id, dtype=torch.int32, device=self.device ) lora_arguments = ( {"adapter_mask": adapter_mask} if adapter_mask is not None else {} ) output_states = self.forward(**features, **lora_arguments, return_dict=False) output_tokens = output_states[0] features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]}) return features def get_word_embedding_dimension(self) -> int: return self.auto_model.config.hidden_size def tokenize( self, texts: list[str] | list[dict] | list[tuple[str, str]], padding: str | bool = True ) -> dict[str, torch.Tensor]: """Tokenizes a text and maps tokens to token-ids""" output = {} if isinstance(texts[0], str): to_tokenize = [texts] elif isinstance(texts[0], dict): to_tokenize = [] output["text_keys"] = [] for lookup in texts: text_key, text = next(iter(lookup.items())) to_tokenize.append(text) output["text_keys"].append(text_key) to_tokenize = [to_tokenize] else: batch1, batch2 = [], [] for text_tuple in texts: batch1.append(text_tuple[0]) batch2.append(text_tuple[1]) to_tokenize = [batch1, batch2] # strip to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize] # Lowercase if self.do_lower_case: to_tokenize = [[s.lower() for s in col] for col in to_tokenize] output.update( self.tokenizer( *to_tokenize, padding=padding, truncation="longest_first", return_tensors="pt", max_length=self.max_seq_length, ) ) return output def save(self, output_path: str, safe_serialization: bool = True) -> None: self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization) self.tokenizer.save_pretrained(output_path) with open(os.path.join(output_path, "sentence_bert_config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @classmethod def load(cls, input_path: str) -> "Transformer": # Old classes used other config names than 'sentence_bert_config.json' for config_name in [ "sentence_bert_config.json", "sentence_roberta_config.json", "sentence_distilbert_config.json", "sentence_camembert_config.json", "sentence_albert_config.json", "sentence_xlm-roberta_config.json", "sentence_xlnet_config.json", ]: sbert_config_path = os.path.join(input_path, config_name) if os.path.exists(sbert_config_path): break with open(sbert_config_path) as fIn: config = json.load(fIn) # Don't allow configs to set trust_remote_code if "model_args" in config and "trust_remote_code" in config["model_args"]: config["model_args"].pop("trust_remote_code") if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]: config["tokenizer_args"].pop("trust_remote_code") if "config_args" in config and "trust_remote_code" in config["config_args"]: config["config_args"].pop("trust_remote_code") return cls(model_name_or_path=input_path, **config)