jupyterjazz
commited on
Commit
•
4bfe854
1
Parent(s):
97c58e3
upload files
Browse filesSigned-off-by: jupyterjazz <[email protected]>
- README.md +104 -0
- block.py +413 -0
- configuration_xlm_roberta.py +128 -0
- convert_roberta_weights_to_flash.py +170 -0
- embedding.py +76 -0
- mha.py +806 -0
- mlp.py +219 -0
- modeling_lora.py +401 -0
- modeling_xlm_roberta.py +1208 -0
- rotary.py +658 -0
- stochastic_depth.py +97 -0
- xlm_padding.py +229 -0
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- transformers
|
4 |
+
- xlm-roberta
|
5 |
+
library_name: transformers
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
language:
|
8 |
+
- multilingual
|
9 |
+
- af
|
10 |
+
- am
|
11 |
+
- ar
|
12 |
+
- as
|
13 |
+
- az
|
14 |
+
- be
|
15 |
+
- bg
|
16 |
+
- bn
|
17 |
+
- br
|
18 |
+
- bs
|
19 |
+
- ca
|
20 |
+
- cs
|
21 |
+
- cy
|
22 |
+
- da
|
23 |
+
- de
|
24 |
+
- el
|
25 |
+
- en
|
26 |
+
- eo
|
27 |
+
- es
|
28 |
+
- et
|
29 |
+
- eu
|
30 |
+
- fa
|
31 |
+
- fi
|
32 |
+
- fr
|
33 |
+
- fy
|
34 |
+
- ga
|
35 |
+
- gd
|
36 |
+
- gl
|
37 |
+
- gu
|
38 |
+
- ha
|
39 |
+
- he
|
40 |
+
- hi
|
41 |
+
- hr
|
42 |
+
- hu
|
43 |
+
- hy
|
44 |
+
- id
|
45 |
+
- is
|
46 |
+
- it
|
47 |
+
- ja
|
48 |
+
- jv
|
49 |
+
- ka
|
50 |
+
- kk
|
51 |
+
- km
|
52 |
+
- kn
|
53 |
+
- ko
|
54 |
+
- ku
|
55 |
+
- ky
|
56 |
+
- la
|
57 |
+
- lo
|
58 |
+
- lt
|
59 |
+
- lv
|
60 |
+
- mg
|
61 |
+
- mk
|
62 |
+
- ml
|
63 |
+
- mn
|
64 |
+
- mr
|
65 |
+
- ms
|
66 |
+
- my
|
67 |
+
- ne
|
68 |
+
- nl
|
69 |
+
- 'no'
|
70 |
+
- om
|
71 |
+
- or
|
72 |
+
- pa
|
73 |
+
- pl
|
74 |
+
- ps
|
75 |
+
- pt
|
76 |
+
- ro
|
77 |
+
- ru
|
78 |
+
- sa
|
79 |
+
- sd
|
80 |
+
- si
|
81 |
+
- sk
|
82 |
+
- sl
|
83 |
+
- so
|
84 |
+
- sq
|
85 |
+
- sr
|
86 |
+
- su
|
87 |
+
- sv
|
88 |
+
- sw
|
89 |
+
- ta
|
90 |
+
- te
|
91 |
+
- th
|
92 |
+
- tl
|
93 |
+
- tr
|
94 |
+
- ug
|
95 |
+
- uk
|
96 |
+
- ur
|
97 |
+
- uz
|
98 |
+
- vi
|
99 |
+
- xh
|
100 |
+
- yi
|
101 |
+
- zh
|
102 |
+
---
|
103 |
+
|
104 |
+
Modified version of https://huggingface.co/jinaai/xlm-roberta-flash-implementation for the onnx conversion
|
block.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
|
2 |
+
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
+
|
4 |
+
# Copyright (c) 2024, Tri Dao.
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch import Tensor
|
12 |
+
|
13 |
+
from .mha import MHA
|
14 |
+
from .mlp import Mlp
|
15 |
+
from .stochastic_depth import StochasticDepth
|
16 |
+
|
17 |
+
try:
|
18 |
+
from flash_attn.ops.triton.layer_norm import RMSNorm, layer_norm_fn
|
19 |
+
except ImportError:
|
20 |
+
layer_norm_fn, RMSNorm = None, None
|
21 |
+
|
22 |
+
|
23 |
+
class Block(nn.Module):
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
dim,
|
27 |
+
mixer_cls=None,
|
28 |
+
mlp_cls=None,
|
29 |
+
norm_cls=nn.LayerNorm,
|
30 |
+
dropout_cls=nn.Dropout,
|
31 |
+
prenorm=True,
|
32 |
+
resid_dropout1=0.0,
|
33 |
+
resid_dropout2=0.0,
|
34 |
+
drop_path1=0.0,
|
35 |
+
drop_path2=0.0,
|
36 |
+
fused_dropout_add_ln=False,
|
37 |
+
return_residual=False,
|
38 |
+
residual_in_fp32=False,
|
39 |
+
sequence_parallel=False,
|
40 |
+
mark_shared_params=False,
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
For prenorm=True, this Block has a slightly different structure compared to a regular
|
44 |
+
prenorm Transformer block.
|
45 |
+
The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
|
46 |
+
[Ref: https://arxiv.org/abs/2002.04745]
|
47 |
+
Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
|
48 |
+
the hidden_states (output of the MLP) and the residual.
|
49 |
+
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
|
50 |
+
The residual needs to be provided (except for the very first block).
|
51 |
+
|
52 |
+
For prenorm=False, this Block has the same structure as a regular postnorm Transformer
|
53 |
+
block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.
|
54 |
+
|
55 |
+
return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
|
56 |
+
This is for performance reason: for post-norm architecture, returning the input allows us
|
57 |
+
to fuse the backward of nn.Linear with the residual connection.
|
58 |
+
"""
|
59 |
+
super().__init__()
|
60 |
+
self.prenorm = prenorm
|
61 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
62 |
+
self.return_residual = return_residual
|
63 |
+
self.residual_in_fp32 = residual_in_fp32
|
64 |
+
if self.residual_in_fp32:
|
65 |
+
assert self.prenorm, "residual_in_fp32 is only compatible with prenorm=True"
|
66 |
+
if mixer_cls is None:
|
67 |
+
mixer_cls = partial(MHA, num_heads=dim // 64)
|
68 |
+
if mlp_cls is None:
|
69 |
+
mlp_cls = partial(Mlp, hidden_features=4 * dim)
|
70 |
+
self.mixer = mixer_cls(dim)
|
71 |
+
self.dropout1 = dropout_cls(resid_dropout1)
|
72 |
+
self.drop_path1 = StochasticDepth(drop_path1, mode="row")
|
73 |
+
self.norm1 = norm_cls(dim)
|
74 |
+
self.mlp = mlp_cls(dim)
|
75 |
+
if not isinstance(self.mlp, nn.Identity):
|
76 |
+
self.dropout2 = dropout_cls(resid_dropout2)
|
77 |
+
self.drop_path2 = StochasticDepth(drop_path2, mode="row")
|
78 |
+
self.norm2 = norm_cls(dim)
|
79 |
+
|
80 |
+
if self.fused_dropout_add_ln:
|
81 |
+
assert layer_norm_fn is not None, "Triton is not installed"
|
82 |
+
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
|
83 |
+
self.dropout1, nn.Dropout
|
84 |
+
)
|
85 |
+
|
86 |
+
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
|
87 |
+
# then the input to each worker in the tensor parallel group will be different.
|
88 |
+
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
|
89 |
+
# For now this is not an issue because we always use sequence_parallel=True during training
|
90 |
+
# and only use sequence_parallel=False during inference.
|
91 |
+
|
92 |
+
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
|
93 |
+
if sequence_parallel:
|
94 |
+
for p in self.norm1.parameters():
|
95 |
+
p._sequence_parallel = True
|
96 |
+
if hasattr(self, "norm2"):
|
97 |
+
for p in self.norm2.parameters():
|
98 |
+
p._sequence_parallel = True
|
99 |
+
# Mark the norm parameters as "shared_params" so that we sync their values at init.
|
100 |
+
if mark_shared_params:
|
101 |
+
for p in self.norm1.parameters():
|
102 |
+
p._shared_params = True
|
103 |
+
if hasattr(self, "norm2"):
|
104 |
+
for p in self.norm2.parameters():
|
105 |
+
p._shared_params = True
|
106 |
+
|
107 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
108 |
+
return self.mixer.allocate_inference_cache(
|
109 |
+
batch_size, max_seqlen, dtype=dtype, **kwargs
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(
|
113 |
+
self,
|
114 |
+
hidden_states: Tensor,
|
115 |
+
residual: Optional[Tensor] = None,
|
116 |
+
mixer_subset=None,
|
117 |
+
mixer_kwargs=None,
|
118 |
+
):
|
119 |
+
r"""Pass the input through the encoder layer.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
hidden_states: the sequence to the encoder layer (required).
|
123 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
124 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
125 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
126 |
+
about the CLS token in the last layer.
|
127 |
+
"""
|
128 |
+
if self.prenorm:
|
129 |
+
if not self.fused_dropout_add_ln:
|
130 |
+
dropped = self.drop_path1(self.dropout1(hidden_states))
|
131 |
+
residual = (dropped + residual) if residual is not None else dropped
|
132 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
133 |
+
if self.residual_in_fp32:
|
134 |
+
residual = residual.to(torch.float32)
|
135 |
+
else:
|
136 |
+
if self.drop_path1.p == 0 or not self.training:
|
137 |
+
rowscale1 = None
|
138 |
+
else:
|
139 |
+
rowscale1 = self.drop_path1(
|
140 |
+
torch.ones(
|
141 |
+
hidden_states.shape[:-1],
|
142 |
+
device=hidden_states.device,
|
143 |
+
dtype=hidden_states.dtype,
|
144 |
+
)
|
145 |
+
)
|
146 |
+
hidden_states, residual = layer_norm_fn(
|
147 |
+
hidden_states,
|
148 |
+
self.norm1.weight,
|
149 |
+
self.norm1.bias,
|
150 |
+
residual=residual,
|
151 |
+
eps=self.norm1.eps,
|
152 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
153 |
+
rowscale=rowscale1,
|
154 |
+
prenorm=True,
|
155 |
+
residual_in_fp32=self.residual_in_fp32,
|
156 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
157 |
+
)
|
158 |
+
if mixer_kwargs is None:
|
159 |
+
mixer_kwargs = {}
|
160 |
+
if mixer_subset is not None:
|
161 |
+
mixer_kwargs["mixer_subset"] = mixer_subset
|
162 |
+
hidden_states = self.mixer(hidden_states, **mixer_kwargs)
|
163 |
+
if mixer_subset is not None:
|
164 |
+
residual = residual[:, mixer_subset]
|
165 |
+
if not isinstance(self.mlp, nn.Identity):
|
166 |
+
if not self.fused_dropout_add_ln:
|
167 |
+
dropped = self.drop_path2(self.dropout2(hidden_states))
|
168 |
+
residual = (dropped + residual) if residual is not None else dropped
|
169 |
+
hidden_states = self.norm2(
|
170 |
+
residual.to(dtype=self.norm2.weight.dtype)
|
171 |
+
)
|
172 |
+
if self.residual_in_fp32:
|
173 |
+
residual = residual.to(torch.float32)
|
174 |
+
else:
|
175 |
+
if self.drop_path2.p == 0 or not self.training:
|
176 |
+
rowscale2 = None
|
177 |
+
else:
|
178 |
+
rowscale2 = self.drop_path2(
|
179 |
+
torch.ones(
|
180 |
+
hidden_states.shape[:-1],
|
181 |
+
device=hidden_states.device,
|
182 |
+
dtype=hidden_states.dtype,
|
183 |
+
)
|
184 |
+
)
|
185 |
+
hidden_states, residual = layer_norm_fn(
|
186 |
+
hidden_states,
|
187 |
+
self.norm2.weight,
|
188 |
+
self.norm2.bias,
|
189 |
+
residual=residual,
|
190 |
+
eps=self.norm2.eps,
|
191 |
+
dropout_p=self.dropout2.p if self.training else 0.0,
|
192 |
+
rowscale=rowscale2,
|
193 |
+
prenorm=True,
|
194 |
+
residual_in_fp32=self.residual_in_fp32,
|
195 |
+
is_rms_norm=isinstance(self.norm2, RMSNorm),
|
196 |
+
)
|
197 |
+
hidden_states = self.mlp(hidden_states)
|
198 |
+
return hidden_states, residual
|
199 |
+
else:
|
200 |
+
assert residual is None
|
201 |
+
mixer_out = self.mixer(
|
202 |
+
hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})
|
203 |
+
)
|
204 |
+
if self.return_residual: # mixer out is actually a pair here
|
205 |
+
mixer_out, hidden_states = mixer_out
|
206 |
+
if not self.fused_dropout_add_ln:
|
207 |
+
hidden_states = self.norm1(
|
208 |
+
(self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(
|
209 |
+
dtype=self.norm1.weight.dtype
|
210 |
+
)
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
if self.drop_path1.p == 0 or not self.training:
|
214 |
+
rowscale1 = None
|
215 |
+
else:
|
216 |
+
rowscale1 = self.drop_path1(
|
217 |
+
torch.ones(
|
218 |
+
mixer_out.shape[:-1],
|
219 |
+
device=mixer_out.device,
|
220 |
+
dtype=mixer_out.dtype,
|
221 |
+
)
|
222 |
+
)
|
223 |
+
hidden_states = layer_norm_fn(
|
224 |
+
mixer_out,
|
225 |
+
self.norm1.weight,
|
226 |
+
self.norm1.bias,
|
227 |
+
residual=hidden_states,
|
228 |
+
eps=self.norm1.eps,
|
229 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
230 |
+
rowscale=rowscale1,
|
231 |
+
prenorm=False,
|
232 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
233 |
+
)
|
234 |
+
if not isinstance(self.mlp, nn.Identity):
|
235 |
+
mlp_out = self.mlp(
|
236 |
+
hidden_states, task_id=mixer_kwargs.get("task_id")
|
237 |
+
)
|
238 |
+
if self.return_residual: # mlp out is actually a pair here
|
239 |
+
mlp_out, hidden_states = mlp_out
|
240 |
+
if not self.fused_dropout_add_ln:
|
241 |
+
hidden_states = self.norm2(
|
242 |
+
(self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(
|
243 |
+
dtype=self.norm2.weight.dtype
|
244 |
+
)
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
if self.drop_path2.p == 0 or not self.training:
|
248 |
+
rowscale2 = None
|
249 |
+
else:
|
250 |
+
rowscale2 = self.drop_path2(
|
251 |
+
torch.ones(
|
252 |
+
mlp_out.shape[:-1],
|
253 |
+
device=mlp_out.device,
|
254 |
+
dtype=mlp_out.dtype,
|
255 |
+
)
|
256 |
+
)
|
257 |
+
hidden_states = layer_norm_fn(
|
258 |
+
mlp_out,
|
259 |
+
self.norm2.weight,
|
260 |
+
self.norm2.bias,
|
261 |
+
residual=hidden_states,
|
262 |
+
eps=self.norm2.eps,
|
263 |
+
dropout_p=self.dropout2.p if self.training else 0.0,
|
264 |
+
rowscale=rowscale2,
|
265 |
+
prenorm=False,
|
266 |
+
is_rms_norm=isinstance(self.norm2, RMSNorm),
|
267 |
+
)
|
268 |
+
return hidden_states
|
269 |
+
|
270 |
+
|
271 |
+
class ParallelBlock(nn.Module):
|
272 |
+
"""The attention (mixer) and MLP blocks are done in parallel, similar to GPT-J, GPT-NeoX,
|
273 |
+
and PaLM.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
dim,
|
279 |
+
mixer_cls=None,
|
280 |
+
mlp_cls=None,
|
281 |
+
norm_cls=nn.LayerNorm,
|
282 |
+
dropout_cls=nn.Dropout,
|
283 |
+
resid_dropout1=0.0,
|
284 |
+
resid_dropout2=0.0,
|
285 |
+
tied_norm=False,
|
286 |
+
fused_dropout_add_ln=False,
|
287 |
+
residual_in_fp32=False,
|
288 |
+
sequence_parallel=False,
|
289 |
+
mark_shared_params=False,
|
290 |
+
):
|
291 |
+
"""
|
292 |
+
This Block has a slightly different structure compared to a regular
|
293 |
+
prenorm Transformer block.
|
294 |
+
The standard block is: LN -> MHA / MLP -> Dropout -> Add.
|
295 |
+
[Ref: https://arxiv.org/abs/2002.04745]
|
296 |
+
Here we have: Dropout -> Add -> LN -> MHA / MLP, returning both
|
297 |
+
the hidden_states (output1 of the MHA / MLP) and the residual.
|
298 |
+
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
|
299 |
+
The residual needs to be provided (except for the very first block).
|
300 |
+
"""
|
301 |
+
super().__init__()
|
302 |
+
self.tied_norm = tied_norm
|
303 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
304 |
+
self.residual_in_fp32 = residual_in_fp32
|
305 |
+
if mixer_cls is None:
|
306 |
+
mixer_cls = partial(MHA, num_heads=dim // 64)
|
307 |
+
if mlp_cls is None:
|
308 |
+
mlp_cls = partial(Mlp, hidden_features=4 * dim)
|
309 |
+
self.mixer = mixer_cls(dim)
|
310 |
+
self.dropout1 = dropout_cls(resid_dropout1)
|
311 |
+
self.norm1 = norm_cls(dim)
|
312 |
+
self.mlp = mlp_cls(dim)
|
313 |
+
self.dropout2 = dropout_cls(resid_dropout2)
|
314 |
+
if not self.tied_norm:
|
315 |
+
self.norm2 = norm_cls(dim)
|
316 |
+
|
317 |
+
if self.fused_dropout_add_ln:
|
318 |
+
assert layer_norm_fn is not None, "Triton is not installed"
|
319 |
+
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
|
320 |
+
self.dropout1, nn.Dropout
|
321 |
+
)
|
322 |
+
|
323 |
+
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
|
324 |
+
# then the input to each worker in the tensor parallel group will be different.
|
325 |
+
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
|
326 |
+
# For now this is not an issue because we always use sequence_parallel=True during training
|
327 |
+
# and only use sequence_parallel=False during inference.
|
328 |
+
|
329 |
+
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
|
330 |
+
if sequence_parallel:
|
331 |
+
for p in self.norm1.parameters():
|
332 |
+
p._sequence_parallel = True
|
333 |
+
if hasattr(self, "norm2"):
|
334 |
+
for p in self.norm2.parameters():
|
335 |
+
p._sequence_parallel = True
|
336 |
+
# Mark the norm parameters as "shared_params" so that we sync their values at init.
|
337 |
+
if mark_shared_params:
|
338 |
+
for p in self.norm1.parameters():
|
339 |
+
p._shared_params = True
|
340 |
+
if hasattr(self, "norm2"):
|
341 |
+
for p in self.norm2.parameters():
|
342 |
+
p._shared_params = True
|
343 |
+
|
344 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
345 |
+
return self.mixer.allocate_inference_cache(
|
346 |
+
batch_size, max_seqlen, dtype=dtype, **kwargs
|
347 |
+
)
|
348 |
+
|
349 |
+
def forward(
|
350 |
+
self,
|
351 |
+
hidden_states1: Tensor,
|
352 |
+
hidden_states2: Optional[Tensor] = None,
|
353 |
+
residual: Optional[Tensor] = None,
|
354 |
+
mixer_kwargs=None,
|
355 |
+
):
|
356 |
+
r"""Pass the input through the encoder layer.
|
357 |
+
|
358 |
+
Args:
|
359 |
+
hidden_states1: the output of the previous attention (mixer) or embedding layer.
|
360 |
+
hidden_states2: the output of the previous MLP layer (if None, will use hidden_states1).
|
361 |
+
residual.
|
362 |
+
"""
|
363 |
+
# TODO: Ideally we should only do the allgather / allreduce once for
|
364 |
+
# the Linear to MLP & Attention
|
365 |
+
if not self.fused_dropout_add_ln:
|
366 |
+
dropped1 = self.dropout1(hidden_states1)
|
367 |
+
# For the very 1st block, we only want 1 dropout, not two different dropouts
|
368 |
+
if hidden_states2 is not None:
|
369 |
+
dropped2 = self.dropout2(hidden_states2)
|
370 |
+
residual = (
|
371 |
+
(residual + dropped1 + dropped2)
|
372 |
+
if residual is not None
|
373 |
+
else dropped1 + dropped2
|
374 |
+
)
|
375 |
+
else:
|
376 |
+
residual = (residual + dropped1) if residual is not None else dropped1
|
377 |
+
hidden_states1 = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
378 |
+
hidden_states2 = (
|
379 |
+
self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
380 |
+
if not self.tied_norm
|
381 |
+
else hidden_states1
|
382 |
+
)
|
383 |
+
if self.residual_in_fp32:
|
384 |
+
residual = residual.to(torch.float32)
|
385 |
+
else:
|
386 |
+
weight2, bias2 = (
|
387 |
+
(self.norm2.weight, self.norm2.bias)
|
388 |
+
if not self.tied_norm
|
389 |
+
else (None, None)
|
390 |
+
)
|
391 |
+
hidden_states1, *rest, residual = layer_norm_fn(
|
392 |
+
hidden_states1,
|
393 |
+
self.norm1.weight,
|
394 |
+
self.norm1.bias,
|
395 |
+
residual=residual,
|
396 |
+
x1=hidden_states2,
|
397 |
+
weight1=weight2,
|
398 |
+
bias1=bias2,
|
399 |
+
eps=self.norm1.eps,
|
400 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
401 |
+
prenorm=True,
|
402 |
+
residual_in_fp32=self.residual_in_fp32,
|
403 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
404 |
+
)
|
405 |
+
if self.tied_norm:
|
406 |
+
hidden_states2 = hidden_states1
|
407 |
+
else:
|
408 |
+
(hidden_states2,) = rest
|
409 |
+
if mixer_kwargs is None:
|
410 |
+
mixer_kwargs = {}
|
411 |
+
hidden_states1 = self.mixer(hidden_states1, **mixer_kwargs)
|
412 |
+
hidden_states2 = self.mlp(hidden_states2)
|
413 |
+
return hidden_states1, hidden_states2, residual
|
configuration_xlm_roberta.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
|
6 |
+
|
7 |
+
class XLMRobertaFlashConfig(PretrainedConfig):
|
8 |
+
|
9 |
+
model_type = "xlm-roberta"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size: int = 250002,
|
14 |
+
hidden_size: int = 1024,
|
15 |
+
num_hidden_layers: int = 24,
|
16 |
+
num_attention_heads: int = 16,
|
17 |
+
intermediate_size: int = 4096,
|
18 |
+
hidden_act: str = "gelu",
|
19 |
+
hidden_dropout_prob: float = 0.1,
|
20 |
+
attention_probs_dropout_prob: float = 0.1,
|
21 |
+
max_position_embeddings: int = 8194,
|
22 |
+
type_vocab_size: int = 1,
|
23 |
+
initializer_range: float = 0.02,
|
24 |
+
layer_norm_eps: float = 1e-05,
|
25 |
+
pad_token_id: int = 1,
|
26 |
+
bos_token_id: int = 0,
|
27 |
+
eos_token_id: int = 2,
|
28 |
+
position_embedding_type: str = "rotary",
|
29 |
+
rotary_emb_base: float = 10000.0,
|
30 |
+
use_cache: bool = True,
|
31 |
+
use_reentrant: bool = False,
|
32 |
+
classifier_dropout: Optional[float] = None,
|
33 |
+
lora_adaptations: Optional[List[str]] = None,
|
34 |
+
task_instructions: Optional[Dict[str, str]] = None,
|
35 |
+
lora_rank: int = 4,
|
36 |
+
lora_dropout_p: float = 0.0,
|
37 |
+
lora_alpha: int = 1,
|
38 |
+
lora_main_params_trainable: bool = False,
|
39 |
+
load_trained_adapters: bool = False,
|
40 |
+
use_flash_attn: bool = True,
|
41 |
+
torch_dtype: Optional[Union[str, torch.dtype]] = None,
|
42 |
+
emb_pooler: Optional[str] = None,
|
43 |
+
matryoshka_dimensions: Optional[List[int]] = None,
|
44 |
+
truncate_dim: Optional[int] = None,
|
45 |
+
**kwargs: Dict[str, Any],
|
46 |
+
):
|
47 |
+
"""
|
48 |
+
Initialize the XLMRobertaFlashConfig configuration.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
vocab_size (int): Size of the vocabulary.
|
52 |
+
hidden_size (int): Dimensionality of the encoder layers and the pooler layer.
|
53 |
+
num_hidden_layers (int): Number of hidden layers in the Transformer encoder.
|
54 |
+
num_attention_heads (int): Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
intermediate_size (int): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer.
|
56 |
+
hidden_act (str): The activation function to use.
|
57 |
+
hidden_dropout_prob (float): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (float): The dropout ratio for the attention probabilities.
|
59 |
+
max_position_embeddings (int): The maximum length of the position embeddings.
|
60 |
+
type_vocab_size (int): The vocabulary size of the token type ids.
|
61 |
+
initializer_range (float): The standard deviation for initializing all weight matrices.
|
62 |
+
layer_norm_eps (float): The epsilon used by the layer normalization layers.
|
63 |
+
pad_token_id (int): The ID of the padding token.
|
64 |
+
bos_token_id (int): The ID of the beginning-of-sequence token.
|
65 |
+
eos_token_id (int): The ID of the end-of-sequence token.
|
66 |
+
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
|
67 |
+
rotary_emb_base (float): Base for rotary embeddings.
|
68 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
|
69 |
+
use_reentrant (bool): Whether or not the model should enable the 'use_reentrant' flag in gradient checkpointing.
|
70 |
+
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
|
71 |
+
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
|
72 |
+
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
|
73 |
+
lora_rank (int): Rank for LoRA adaptations.
|
74 |
+
lora_dropout_p (float): Dropout probability for LoRA adaptations.
|
75 |
+
lora_alpha (int): Alpha parameter for LoRA.
|
76 |
+
lora_main_params_trainable (bool): Whether to make the main model parameters trainable when using LoRA.
|
77 |
+
load_trained_adapters (bool): Whether to load trained adapters.
|
78 |
+
use_flash_attn (bool): Whether to use FlashAttention.
|
79 |
+
torch_dtype (Optional[Union[str, torch.dtype]]): Data type for the tensors.
|
80 |
+
emb_pooler (Optional[str]): Pooling layer configuration.
|
81 |
+
matryoshka_dimensions (Optional[List[int]]): Configuration for matryoshka dimension reduction.
|
82 |
+
truncate_dim (Optional[int]): Dimension to truncate embeddings to, if any.
|
83 |
+
**kwargs (Dict[str, Any]): Additional keyword arguments passed to the configuration.
|
84 |
+
"""
|
85 |
+
|
86 |
+
super().__init__(
|
87 |
+
pad_token_id=pad_token_id,
|
88 |
+
bos_token_id=bos_token_id,
|
89 |
+
eos_token_id=eos_token_id,
|
90 |
+
**kwargs,
|
91 |
+
)
|
92 |
+
|
93 |
+
self.vocab_size = vocab_size
|
94 |
+
self.hidden_size = hidden_size
|
95 |
+
self.num_hidden_layers = num_hidden_layers
|
96 |
+
self.num_attention_heads = num_attention_heads
|
97 |
+
self.hidden_act = hidden_act
|
98 |
+
self.intermediate_size = intermediate_size
|
99 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
100 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
101 |
+
self.max_position_embeddings = max_position_embeddings
|
102 |
+
self.type_vocab_size = type_vocab_size
|
103 |
+
self.initializer_range = initializer_range
|
104 |
+
self.layer_norm_eps = layer_norm_eps
|
105 |
+
self.position_embedding_type = position_embedding_type
|
106 |
+
self.rotary_emb_base = rotary_emb_base
|
107 |
+
self.use_cache = use_cache
|
108 |
+
self.use_reentrant = use_reentrant
|
109 |
+
self.classifier_dropout = classifier_dropout
|
110 |
+
self.load_trained_adapters = load_trained_adapters
|
111 |
+
self.lora_adaptations = lora_adaptations
|
112 |
+
self.task_instructions = task_instructions
|
113 |
+
self.lora_rank = lora_rank
|
114 |
+
self.lora_dropout_p = lora_dropout_p
|
115 |
+
self.lora_alpha = lora_alpha
|
116 |
+
self.lora_main_params_trainable = lora_main_params_trainable
|
117 |
+
self.use_flash_attn = use_flash_attn
|
118 |
+
self.emb_pooler = emb_pooler
|
119 |
+
self.matryoshka_dimensions = matryoshka_dimensions
|
120 |
+
self.truncate_dim = truncate_dim
|
121 |
+
if (
|
122 |
+
torch_dtype
|
123 |
+
and hasattr(torch, torch_dtype)
|
124 |
+
and type(getattr(torch, torch_dtype)) is torch.dtype
|
125 |
+
):
|
126 |
+
self.torch_dtype = getattr(torch, torch_dtype)
|
127 |
+
else:
|
128 |
+
self.torch_dtype = torch_dtype
|
convert_roberta_weights_to_flash.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from collections import OrderedDict
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
from transformers import XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification
|
5 |
+
|
6 |
+
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig
|
7 |
+
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as FlashXLMRobertaForMaskedLM
|
8 |
+
from .modeling_xlm_roberta import XLMRobertaForSequenceClassification as FlashXLMRobertaForSequenceClassification
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import click
|
12 |
+
|
13 |
+
## inspired by https://github.com/Dao-AILab/flash-attention/blob/85881f547fd1053a7b4a2c3faad6690cca969279/flash_attn/models/bert.py
|
14 |
+
|
15 |
+
|
16 |
+
def remap_state_dict(state_dict, config: PretrainedConfig):
|
17 |
+
"""
|
18 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
19 |
+
"""
|
20 |
+
|
21 |
+
# LayerNorm
|
22 |
+
def key_mapping_ln_gamma_beta(key):
|
23 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
24 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
25 |
+
return key
|
26 |
+
|
27 |
+
state_dict = OrderedDict(
|
28 |
+
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()
|
29 |
+
)
|
30 |
+
|
31 |
+
# Layers
|
32 |
+
def key_mapping_layers(key):
|
33 |
+
return re.sub(r"^roberta.encoder.layer.", "roberta.encoder.layers.", key)
|
34 |
+
|
35 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
36 |
+
|
37 |
+
# LayerNorm
|
38 |
+
def key_mapping_ln(key):
|
39 |
+
key = re.sub(r"^roberta.embeddings.LayerNorm.", "roberta.emb_ln.", key)
|
40 |
+
key = re.sub(
|
41 |
+
r"^roberta.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
42 |
+
r"roberta.encoder.layers.\1.norm1.\2",
|
43 |
+
key,
|
44 |
+
)
|
45 |
+
key = re.sub(
|
46 |
+
r"^roberta.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
47 |
+
r"roberta.encoder.layers.\1.norm2.\2",
|
48 |
+
key,
|
49 |
+
)
|
50 |
+
key = re.sub(
|
51 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
52 |
+
r"cls.predictions.transform.layer_norm.\1",
|
53 |
+
key,
|
54 |
+
)
|
55 |
+
return key
|
56 |
+
|
57 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
58 |
+
|
59 |
+
# MLP
|
60 |
+
def key_mapping_mlp(key):
|
61 |
+
key = re.sub(
|
62 |
+
r"^roberta.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
63 |
+
r"roberta.encoder.layers.\1.mlp.fc1.\2",
|
64 |
+
key,
|
65 |
+
)
|
66 |
+
key = re.sub(
|
67 |
+
r"^roberta.encoder.layers.(\d+).output.dense.(weight|bias)",
|
68 |
+
r"roberta.encoder.layers.\1.mlp.fc2.\2",
|
69 |
+
key,
|
70 |
+
)
|
71 |
+
return key
|
72 |
+
|
73 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
74 |
+
|
75 |
+
# Attention
|
76 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
77 |
+
for d in range(config.num_hidden_layers):
|
78 |
+
Wq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.weight")
|
79 |
+
Wk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.weight")
|
80 |
+
Wv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.weight")
|
81 |
+
bq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.bias")
|
82 |
+
bk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.bias")
|
83 |
+
bv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.bias")
|
84 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
85 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
|
86 |
+
[Wq, Wk, Wv], dim=0
|
87 |
+
)
|
88 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat(
|
89 |
+
[bq, bk, bv], dim=0
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.weight"] = Wq
|
93 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat(
|
94 |
+
[Wk, Wv], dim=0
|
95 |
+
)
|
96 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.bias"] = bq
|
97 |
+
state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat(
|
98 |
+
[bk, bv], dim=0
|
99 |
+
)
|
100 |
+
|
101 |
+
def key_mapping_attn(key):
|
102 |
+
return re.sub(
|
103 |
+
r"^roberta.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
104 |
+
r"roberta.encoder.layers.\1.mixer.out_proj.\2",
|
105 |
+
key,
|
106 |
+
)
|
107 |
+
|
108 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
109 |
+
|
110 |
+
def key_mapping_decoder_bias(key):
|
111 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
112 |
+
|
113 |
+
state_dict = OrderedDict(
|
114 |
+
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items()
|
115 |
+
)
|
116 |
+
|
117 |
+
# Word embedding
|
118 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
119 |
+
if pad_vocab_size_multiple > 1:
|
120 |
+
word_embeddings = state_dict["roberta.embeddings.word_embeddings.weight"]
|
121 |
+
state_dict["roberta.embeddings.word_embeddings.weight"] = F.pad(
|
122 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
123 |
+
)
|
124 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
125 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
126 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
127 |
+
)
|
128 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
129 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
130 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
131 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
132 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
133 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
134 |
+
)
|
135 |
+
|
136 |
+
return state_dict
|
137 |
+
|
138 |
+
|
139 |
+
@click.command()
|
140 |
+
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
141 |
+
@click.option('--revision', default='main', help='revision')
|
142 |
+
@click.option('--task', default='masked_lm', help='task')
|
143 |
+
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
144 |
+
def main(model_name, revision, task, output):
|
145 |
+
|
146 |
+
if task == 'masked_lm':
|
147 |
+
roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name, revision=revision)
|
148 |
+
elif task == 'sequence_classification':
|
149 |
+
roberta_model = XLMRobertaForSequenceClassification.from_pretrained(model_name, revision=revision,num_labels=1)
|
150 |
+
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
151 |
+
state_dict = roberta_model.state_dict()
|
152 |
+
new_state_dict = remap_state_dict(state_dict, config)
|
153 |
+
|
154 |
+
if task == 'masked_lm':
|
155 |
+
flash_model = FlashXLMRobertaForMaskedLM(config)
|
156 |
+
elif task == 'sequence_classification':
|
157 |
+
flash_model = FlashXLMRobertaForSequenceClassification(config)
|
158 |
+
|
159 |
+
for k, v in flash_model.state_dict().items():
|
160 |
+
if k not in new_state_dict:
|
161 |
+
print(f'Use old weights from {k}')
|
162 |
+
new_state_dict[k] = v
|
163 |
+
|
164 |
+
flash_model.load_state_dict(new_state_dict)
|
165 |
+
|
166 |
+
torch.save(new_state_dict, output)
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
main()
|
embedding.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py
|
2 |
+
# Commit id: f1a73d074002226c42ce65a1df170ecff9f022c0
|
3 |
+
|
4 |
+
# Copyright (c) 2022, Tri Dao.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import \
|
9 |
+
create_position_ids_from_input_ids
|
10 |
+
|
11 |
+
|
12 |
+
class XLMRobertaEmbeddings(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
embed_dim,
|
16 |
+
vocab_size,
|
17 |
+
max_position_embeddings,
|
18 |
+
type_vocab_size,
|
19 |
+
padding_idx=None,
|
20 |
+
device=None,
|
21 |
+
dtype=None,
|
22 |
+
):
|
23 |
+
"""
|
24 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
25 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
26 |
+
"""
|
27 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
28 |
+
super().__init__()
|
29 |
+
self.word_embeddings = nn.Embedding(
|
30 |
+
vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
|
31 |
+
)
|
32 |
+
self.max_position_embeddings = max_position_embeddings
|
33 |
+
self.type_vocab_size = type_vocab_size
|
34 |
+
if self.max_position_embeddings > 0:
|
35 |
+
self.position_embeddings = nn.Embedding(
|
36 |
+
max_position_embeddings, embed_dim, **factory_kwargs
|
37 |
+
)
|
38 |
+
if self.type_vocab_size > 0:
|
39 |
+
self.token_type_embeddings = nn.Embedding(
|
40 |
+
type_vocab_size, embed_dim, **factory_kwargs
|
41 |
+
)
|
42 |
+
|
43 |
+
def forward(
|
44 |
+
self, input_ids, position_ids=None, token_type_ids=None, task_id=None
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
input_ids: (batch, seqlen)
|
48 |
+
position_ids: (batch, seqlen)
|
49 |
+
token_type_ids: (batch, seqlen)
|
50 |
+
"""
|
51 |
+
batch_size, seqlen = input_ids.shape
|
52 |
+
if task_id is not None:
|
53 |
+
embeddings = self.word_embeddings(input_ids, task_id=task_id)
|
54 |
+
else:
|
55 |
+
embeddings = self.word_embeddings(input_ids)
|
56 |
+
if self.max_position_embeddings > 0:
|
57 |
+
if position_ids is None:
|
58 |
+
position_ids = create_position_ids_from_input_ids(
|
59 |
+
input_ids, padding_idx=self.word_embeddings.padding_idx
|
60 |
+
).to(input_ids.device)
|
61 |
+
position_embeddings = self.position_embeddings(position_ids)
|
62 |
+
embeddings = embeddings + position_embeddings
|
63 |
+
if self.type_vocab_size > 0:
|
64 |
+
if token_type_ids is None:
|
65 |
+
token_type_ids = torch.zeros(
|
66 |
+
seqlen, dtype=torch.long, device=input_ids.device
|
67 |
+
)
|
68 |
+
|
69 |
+
if task_id is not None:
|
70 |
+
token_type_embeddings = self.token_type_embeddings(
|
71 |
+
token_type_ids, task_id=task_id
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
75 |
+
embeddings = embeddings + token_type_embeddings
|
76 |
+
return embeddings
|
mha.py
ADDED
@@ -0,0 +1,806 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py
|
2 |
+
# Commit id: 6bbc532388e61185a92e2a563126739967b4c8c5
|
3 |
+
# Rotary varlen support from https://github.com/Dao-AILab/flash-attention/pull/556
|
4 |
+
|
5 |
+
# Copyright (c) 2023, Tri Dao.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
try:
|
15 |
+
from flash_attn import (flash_attn_kvpacked_func,
|
16 |
+
flash_attn_qkvpacked_func,
|
17 |
+
flash_attn_varlen_kvpacked_func,
|
18 |
+
flash_attn_varlen_qkvpacked_func,
|
19 |
+
flash_attn_with_kvcache)
|
20 |
+
except ImportError:
|
21 |
+
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
|
22 |
+
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
|
23 |
+
flash_attn_with_kvcache = None
|
24 |
+
|
25 |
+
try:
|
26 |
+
from flash_attn.ops.fused_dense import (ColumnParallelLinear, FusedDense,
|
27 |
+
RowParallelLinear)
|
28 |
+
except ImportError:
|
29 |
+
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
30 |
+
|
31 |
+
from .rotary import RotaryEmbedding
|
32 |
+
|
33 |
+
|
34 |
+
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
35 |
+
def get_alibi_slopes(nheads):
|
36 |
+
def get_slopes_power_of_2(nheads):
|
37 |
+
start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
|
38 |
+
ratio = start
|
39 |
+
return [start * ratio**i for i in range(nheads)]
|
40 |
+
|
41 |
+
if math.log2(nheads).is_integer():
|
42 |
+
return get_slopes_power_of_2(nheads)
|
43 |
+
else:
|
44 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
|
45 |
+
return (
|
46 |
+
get_slopes_power_of_2(closest_power_of_2)
|
47 |
+
+ get_alibi_slopes(2 * closest_power_of_2)[0::2][
|
48 |
+
: nheads - closest_power_of_2
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class FlashSelfAttention(nn.Module):
|
54 |
+
"""Implement the scaled dot product attention with softmax.
|
55 |
+
Arguments
|
56 |
+
---------
|
57 |
+
softmax_scale: The temperature to use for the softmax attention.
|
58 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
59 |
+
runtime)
|
60 |
+
attention_dropout: The dropout rate to apply to the attention
|
61 |
+
(default: 0.0)
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
causal=False,
|
67 |
+
softmax_scale=None,
|
68 |
+
attention_dropout=0.0,
|
69 |
+
window_size=(-1, -1),
|
70 |
+
alibi_slopes=None,
|
71 |
+
deterministic=False,
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
assert (
|
75 |
+
flash_attn_varlen_qkvpacked_func is not None
|
76 |
+
), "FlashAttention is not installed"
|
77 |
+
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
|
78 |
+
self.causal = causal
|
79 |
+
self.softmax_scale = softmax_scale
|
80 |
+
self.drop = nn.Dropout(attention_dropout)
|
81 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
82 |
+
self.window_size = window_size
|
83 |
+
self.deterministic = deterministic
|
84 |
+
|
85 |
+
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
86 |
+
"""Implements the multihead softmax attention.
|
87 |
+
Arguments
|
88 |
+
---------
|
89 |
+
qkv: The tensor containing the query, key, and value.
|
90 |
+
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
|
91 |
+
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
|
92 |
+
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
|
93 |
+
causal: if passed, will override self.causal
|
94 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
95 |
+
of the sequences in the batch, used to index into qkv.
|
96 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
97 |
+
Returns:
|
98 |
+
--------
|
99 |
+
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
100 |
+
else (B, S, H, D).
|
101 |
+
"""
|
102 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
103 |
+
assert qkv.is_cuda
|
104 |
+
causal = self.causal if causal is None else causal
|
105 |
+
unpadded = cu_seqlens is not None
|
106 |
+
if self.alibi_slopes is not None:
|
107 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
108 |
+
if unpadded:
|
109 |
+
assert cu_seqlens.dtype == torch.int32
|
110 |
+
assert max_seqlen is not None
|
111 |
+
assert isinstance(max_seqlen, int)
|
112 |
+
return flash_attn_varlen_qkvpacked_func(
|
113 |
+
qkv,
|
114 |
+
cu_seqlens,
|
115 |
+
max_seqlen,
|
116 |
+
self.drop.p if self.training else 0.0,
|
117 |
+
softmax_scale=self.softmax_scale,
|
118 |
+
causal=causal,
|
119 |
+
alibi_slopes=self.alibi_slopes,
|
120 |
+
window_size=self.window_size,
|
121 |
+
deterministic=self.deterministic,
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
return flash_attn_qkvpacked_func(
|
125 |
+
qkv,
|
126 |
+
self.drop.p if self.training else 0.0,
|
127 |
+
softmax_scale=self.softmax_scale,
|
128 |
+
causal=causal,
|
129 |
+
alibi_slopes=self.alibi_slopes,
|
130 |
+
window_size=self.window_size,
|
131 |
+
deterministic=self.deterministic,
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
class FlashCrossAttention(nn.Module):
|
136 |
+
"""Implement the scaled dot product attention with softmax.
|
137 |
+
Arguments
|
138 |
+
---------
|
139 |
+
softmax_scale: The temperature to use for the softmax attention.
|
140 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
141 |
+
runtime)
|
142 |
+
attention_dropout: The dropout rate to apply to the attention
|
143 |
+
(default: 0.0)
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
causal=False,
|
149 |
+
softmax_scale=None,
|
150 |
+
attention_dropout=0.0,
|
151 |
+
alibi_slopes=None,
|
152 |
+
window_size=(-1, -1),
|
153 |
+
deterministic=False,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
assert (
|
157 |
+
flash_attn_varlen_kvpacked_func is not None
|
158 |
+
), "FlashAttention is not installed"
|
159 |
+
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
|
160 |
+
self.causal = causal
|
161 |
+
self.softmax_scale = softmax_scale
|
162 |
+
self.drop = nn.Dropout(attention_dropout)
|
163 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
164 |
+
self.window_size = window_size
|
165 |
+
self.deterministic = deterministic
|
166 |
+
|
167 |
+
def forward(
|
168 |
+
self,
|
169 |
+
q,
|
170 |
+
kv,
|
171 |
+
causal=None,
|
172 |
+
cu_seqlens=None,
|
173 |
+
max_seqlen=None,
|
174 |
+
cu_seqlens_k=None,
|
175 |
+
max_seqlen_k=None,
|
176 |
+
):
|
177 |
+
"""Implements the multihead softmax attention.
|
178 |
+
Arguments
|
179 |
+
---------
|
180 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
181 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
182 |
+
causal: if passed, will override self.causal
|
183 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
184 |
+
of the sequences in the batch, used to index into q.
|
185 |
+
max_seqlen: int. Maximum sequence length in the batch of q.
|
186 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
187 |
+
of the sequences in the batch, used to index into kv.
|
188 |
+
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
189 |
+
"""
|
190 |
+
assert q.dtype in [torch.float16, torch.bfloat16]
|
191 |
+
assert q.is_cuda and kv.is_cuda
|
192 |
+
causal = self.causal if causal is None else causal
|
193 |
+
unpadded = cu_seqlens is not None
|
194 |
+
if self.alibi_slopes is not None:
|
195 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
196 |
+
if unpadded:
|
197 |
+
assert cu_seqlens.dtype == torch.int32
|
198 |
+
assert max_seqlen is not None
|
199 |
+
assert isinstance(max_seqlen, int)
|
200 |
+
assert cu_seqlens_k is not None
|
201 |
+
assert cu_seqlens_k.dtype == torch.int32
|
202 |
+
assert max_seqlen_k is not None
|
203 |
+
assert isinstance(max_seqlen, int)
|
204 |
+
return flash_attn_varlen_kvpacked_func(
|
205 |
+
q,
|
206 |
+
kv,
|
207 |
+
cu_seqlens,
|
208 |
+
cu_seqlens_k,
|
209 |
+
max_seqlen,
|
210 |
+
max_seqlen_k,
|
211 |
+
self.drop.p if self.training else 0.0,
|
212 |
+
softmax_scale=self.softmax_scale,
|
213 |
+
causal=causal,
|
214 |
+
alibi_slopes=self.alibi_slopes,
|
215 |
+
window_size=self.window_size,
|
216 |
+
deterministic=self.deterministic,
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
220 |
+
seqlen_k = kv.shape[1]
|
221 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
222 |
+
return flash_attn_kvpacked_func(
|
223 |
+
q,
|
224 |
+
kv,
|
225 |
+
self.drop.p if self.training else 0.0,
|
226 |
+
causal=causal,
|
227 |
+
softmax_scale=self.softmax_scale,
|
228 |
+
alibi_slopes=self.alibi_slopes,
|
229 |
+
window_size=self.window_size,
|
230 |
+
deterministic=self.deterministic,
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
class SelfAttention(nn.Module):
|
235 |
+
"""Implement the scaled dot product attention with softmax.
|
236 |
+
Arguments
|
237 |
+
---------
|
238 |
+
softmax_scale: The temperature to use for the softmax attention.
|
239 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
240 |
+
runtime)
|
241 |
+
attention_dropout: The dropout rate to apply to the attention
|
242 |
+
(default: 0.0)
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
246 |
+
super().__init__()
|
247 |
+
self.causal = causal
|
248 |
+
self.softmax_scale = softmax_scale
|
249 |
+
self.drop = nn.Dropout(attention_dropout)
|
250 |
+
|
251 |
+
def forward(self, qkv, causal=None, key_padding_mask=None):
|
252 |
+
"""Implements the multihead softmax attention.
|
253 |
+
Arguments
|
254 |
+
---------
|
255 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
256 |
+
causal: if passed, will override self.causal
|
257 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
258 |
+
False means to mask out. (B, S)
|
259 |
+
"""
|
260 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
261 |
+
causal = self.causal if causal is None else causal
|
262 |
+
q, k, v = qkv.unbind(dim=2)
|
263 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
264 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
265 |
+
if key_padding_mask is not None:
|
266 |
+
padding_mask = torch.full(
|
267 |
+
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
|
268 |
+
)
|
269 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
270 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
271 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
272 |
+
if causal:
|
273 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
274 |
+
# So we have to construct the mask in float
|
275 |
+
causal_mask = torch.triu(
|
276 |
+
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
|
277 |
+
)
|
278 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
279 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
280 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
281 |
+
attention_drop = self.drop(attention)
|
282 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
283 |
+
return output
|
284 |
+
|
285 |
+
|
286 |
+
class CrossAttention(nn.Module):
|
287 |
+
"""Implement the scaled dot product attention with softmax.
|
288 |
+
Arguments
|
289 |
+
---------
|
290 |
+
softmax_scale: The temperature to use for the softmax attention.
|
291 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
292 |
+
runtime)
|
293 |
+
attention_dropout: The dropout rate to apply to the attention
|
294 |
+
(default: 0.0)
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
298 |
+
super().__init__()
|
299 |
+
self.causal = causal
|
300 |
+
self.softmax_scale = softmax_scale
|
301 |
+
self.drop = nn.Dropout(attention_dropout)
|
302 |
+
|
303 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
304 |
+
"""Implements the multihead softmax attention.
|
305 |
+
Arguments
|
306 |
+
---------
|
307 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
308 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
309 |
+
causal: if passed, will override self.causal
|
310 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
311 |
+
False means to mask out. (B, Sk)
|
312 |
+
"""
|
313 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
314 |
+
causal = self.causal if causal is None else causal
|
315 |
+
seqlen_k = kv.shape[1]
|
316 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
317 |
+
if kv.shape[3] != q.shape[2]: # MQA/GQA
|
318 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
319 |
+
k, v = kv.unbind(dim=2)
|
320 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
321 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
322 |
+
if key_padding_mask is not None:
|
323 |
+
padding_mask = torch.full(
|
324 |
+
(batch_size, seqlen_k),
|
325 |
+
-10000.0,
|
326 |
+
dtype=scores.dtype,
|
327 |
+
device=scores.device,
|
328 |
+
)
|
329 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
330 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
331 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
332 |
+
if causal:
|
333 |
+
# causal mask needs to take into account the difference between seqlen_q and seqlen_k
|
334 |
+
row_idx = rearrange(
|
335 |
+
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
|
336 |
+
)
|
337 |
+
col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
|
338 |
+
sk = (
|
339 |
+
seqlen_k
|
340 |
+
if key_padding_mask is None
|
341 |
+
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
342 |
+
)
|
343 |
+
causal_mask = col_idx > row_idx + sk - seqlen_q
|
344 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
345 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
346 |
+
attention_drop = self.drop(attention)
|
347 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
348 |
+
return output
|
349 |
+
|
350 |
+
|
351 |
+
class LinearResidual(nn.Linear):
|
352 |
+
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
|
353 |
+
|
354 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
355 |
+
return super().forward(input), input
|
356 |
+
|
357 |
+
|
358 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
359 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
360 |
+
# Pre-allocate memory for key-values for inference.
|
361 |
+
num_heads, head_dim = kv.shape[-2:]
|
362 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
363 |
+
kv_cache = torch.empty(
|
364 |
+
inference_params.max_batch_size,
|
365 |
+
inference_params.max_seqlen,
|
366 |
+
2,
|
367 |
+
num_heads,
|
368 |
+
head_dim,
|
369 |
+
dtype=kv.dtype,
|
370 |
+
device=kv.device,
|
371 |
+
)
|
372 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
373 |
+
else:
|
374 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
375 |
+
# Adjust key and value for inference
|
376 |
+
batch_start = inference_params.batch_size_offset
|
377 |
+
batch_end = batch_start + kv.shape[0]
|
378 |
+
sequence_start = inference_params.seqlen_offset
|
379 |
+
sequence_end = sequence_start + kv.shape[1]
|
380 |
+
assert batch_end <= kv_cache.shape[0]
|
381 |
+
assert sequence_end <= kv_cache.shape[1]
|
382 |
+
assert kv_cache is not None
|
383 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
384 |
+
return kv_cache[batch_start:batch_end, :sequence_end, ...]
|
385 |
+
|
386 |
+
|
387 |
+
class MHA(nn.Module):
|
388 |
+
"""Multi-head self-attention and cross-attention"""
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
embed_dim,
|
393 |
+
num_heads,
|
394 |
+
num_heads_kv=None,
|
395 |
+
cross_attn=False,
|
396 |
+
qkv_proj_bias=True,
|
397 |
+
out_proj_bias=True,
|
398 |
+
dropout=0.0,
|
399 |
+
softmax_scale=None,
|
400 |
+
causal=False,
|
401 |
+
layer_idx=None,
|
402 |
+
dwconv=False,
|
403 |
+
rotary_emb_dim=0,
|
404 |
+
rotary_emb_base=10000.0,
|
405 |
+
rotary_emb_scale_base=None,
|
406 |
+
rotary_emb_interleaved=False,
|
407 |
+
use_alibi=False,
|
408 |
+
window_size=(-1, -1),
|
409 |
+
fused_bias_fc=False,
|
410 |
+
use_flash_attn=False,
|
411 |
+
return_residual=False,
|
412 |
+
checkpointing=False,
|
413 |
+
device=None,
|
414 |
+
dtype=None,
|
415 |
+
) -> None:
|
416 |
+
"""
|
417 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
418 |
+
return_residual: whether to return the input x along with the output. This is for
|
419 |
+
performance reason: for post-norm architecture, returning the input allows us
|
420 |
+
to fuse the backward of nn.Linear with the residual connection.
|
421 |
+
"""
|
422 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
423 |
+
super().__init__()
|
424 |
+
self.embed_dim = embed_dim
|
425 |
+
self.cross_attn = cross_attn
|
426 |
+
self.causal = causal
|
427 |
+
self.layer_idx = layer_idx
|
428 |
+
self.dwconv = dwconv
|
429 |
+
self.rotary_emb_dim = rotary_emb_dim
|
430 |
+
self.use_flash_attn = use_flash_attn
|
431 |
+
self.return_residual = return_residual
|
432 |
+
self.checkpointing = checkpointing
|
433 |
+
if use_alibi:
|
434 |
+
assert use_flash_attn, "ALiBi code path requires flash_attn"
|
435 |
+
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
|
436 |
+
else:
|
437 |
+
alibi_slopes = None
|
438 |
+
if window_size != (-1, -1):
|
439 |
+
assert (
|
440 |
+
use_flash_attn
|
441 |
+
), "Local (sliding window) attention code path requires flash_attn"
|
442 |
+
|
443 |
+
self.num_heads = num_heads
|
444 |
+
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
445 |
+
assert (
|
446 |
+
self.num_heads % self.num_heads_kv == 0
|
447 |
+
), "num_heads must be divisible by num_heads_kv"
|
448 |
+
assert (
|
449 |
+
self.embed_dim % num_heads == 0
|
450 |
+
), "embed_dim must be divisible by num_heads"
|
451 |
+
self.head_dim = self.embed_dim // num_heads
|
452 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
453 |
+
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
454 |
+
|
455 |
+
if self.rotary_emb_dim > 0:
|
456 |
+
assert (
|
457 |
+
not cross_attn
|
458 |
+
), "MHA with rotary embedding does not support cross-attention yet"
|
459 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
460 |
+
self.rotary_emb = RotaryEmbedding(
|
461 |
+
self.rotary_emb_dim,
|
462 |
+
base=rotary_emb_base,
|
463 |
+
scale_base=rotary_emb_scale_base,
|
464 |
+
interleaved=rotary_emb_interleaved,
|
465 |
+
device=device,
|
466 |
+
use_flash_attn=use_flash_attn,
|
467 |
+
)
|
468 |
+
|
469 |
+
if fused_bias_fc and FusedDense is None:
|
470 |
+
raise ImportError("fused_dense is not installed")
|
471 |
+
|
472 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
473 |
+
linear_resid_cls = (
|
474 |
+
LinearResidual
|
475 |
+
if not fused_bias_fc
|
476 |
+
else partial(FusedDense, return_residual=True)
|
477 |
+
)
|
478 |
+
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
|
479 |
+
inner_attn_cls = (
|
480 |
+
partial(
|
481 |
+
FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size
|
482 |
+
)
|
483 |
+
if use_flash_attn
|
484 |
+
else SelfAttention
|
485 |
+
)
|
486 |
+
inner_cross_attn_cls = (
|
487 |
+
partial(
|
488 |
+
FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size
|
489 |
+
)
|
490 |
+
if use_flash_attn
|
491 |
+
else CrossAttention
|
492 |
+
)
|
493 |
+
if not self.cross_attn:
|
494 |
+
self.Wqkv = wqkv_cls(
|
495 |
+
embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
self.Wq = linear_cls(
|
499 |
+
embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs
|
500 |
+
)
|
501 |
+
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
|
502 |
+
if self.dwconv:
|
503 |
+
if self.num_heads_kv == self.num_heads:
|
504 |
+
self.dwconv_qkv = nn.Conv1d(
|
505 |
+
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
self.dwconv_q = nn.Conv1d(
|
509 |
+
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
|
510 |
+
)
|
511 |
+
self.dwconv_kv = nn.Conv1d(
|
512 |
+
kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim
|
513 |
+
)
|
514 |
+
self.inner_attn = inner_attn_cls(
|
515 |
+
causal=causal,
|
516 |
+
softmax_scale=softmax_scale,
|
517 |
+
attention_dropout=dropout,
|
518 |
+
)
|
519 |
+
self.inner_cross_attn = inner_cross_attn_cls(
|
520 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
521 |
+
)
|
522 |
+
self.out_proj = linear_cls(
|
523 |
+
embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs
|
524 |
+
)
|
525 |
+
|
526 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
|
527 |
+
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
528 |
+
device = self.out_proj.weight.device
|
529 |
+
return torch.empty(
|
530 |
+
batch_size,
|
531 |
+
max_seqlen,
|
532 |
+
2,
|
533 |
+
self.num_heads_kv,
|
534 |
+
self.head_dim,
|
535 |
+
dtype=dtype,
|
536 |
+
device=device,
|
537 |
+
)
|
538 |
+
|
539 |
+
def _update_kv_cache(self, kv, inference_params):
|
540 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
541 |
+
assert not self.dwconv, "Generation does not support dwconv yet"
|
542 |
+
assert (
|
543 |
+
self.layer_idx is not None
|
544 |
+
), "Generation requires layer_idx in the constructor"
|
545 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
546 |
+
|
547 |
+
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
|
548 |
+
"""
|
549 |
+
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
|
550 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
551 |
+
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
|
552 |
+
"""
|
553 |
+
assert inference_params is not None and inference_params.seqlen_offset > 0
|
554 |
+
assert self.use_flash_attn
|
555 |
+
if self.rotary_emb_dim > 0:
|
556 |
+
assert self.rotary_emb.scale is None, "This code path does not support xPos"
|
557 |
+
self.rotary_emb._update_cos_sin_cache(
|
558 |
+
inference_params.max_seqlen, device=q.device, dtype=q.dtype
|
559 |
+
)
|
560 |
+
rotary_cos, rotary_sin = (
|
561 |
+
self.rotary_emb._cos_cached,
|
562 |
+
self.rotary_emb._sin_cached,
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
rotary_cos, rotary_sin = None, None
|
566 |
+
batch = q.shape[0]
|
567 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
568 |
+
cache_seqlens = (
|
569 |
+
inference_params.lengths_per_sample[:batch]
|
570 |
+
if inference_params.lengths_per_sample is not None
|
571 |
+
else inference_params.seqlen_offset
|
572 |
+
)
|
573 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
574 |
+
context = flash_attn_with_kvcache(
|
575 |
+
q,
|
576 |
+
kv_cache[:, :, 0],
|
577 |
+
kv_cache[:, :, 1],
|
578 |
+
kv[:, :, 0],
|
579 |
+
kv[:, :, 1],
|
580 |
+
rotary_cos=rotary_cos,
|
581 |
+
rotary_sin=rotary_sin,
|
582 |
+
cache_seqlens=cache_seqlens,
|
583 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
584 |
+
causal=self.inner_cross_attn.causal,
|
585 |
+
rotary_interleaved=(
|
586 |
+
self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False
|
587 |
+
),
|
588 |
+
alibi_slopes=alibi_slopes,
|
589 |
+
)
|
590 |
+
return context
|
591 |
+
|
592 |
+
def _update_kvcache_attention(self, q, kv, inference_params):
|
593 |
+
"""Write kv to inference_params, then do attention"""
|
594 |
+
if (
|
595 |
+
inference_params.seqlen_offset == 0
|
596 |
+
or flash_attn_with_kvcache is None
|
597 |
+
or not self.use_flash_attn
|
598 |
+
):
|
599 |
+
# TODO: this only uses seqlen_offset and not lengths_per_sample.
|
600 |
+
kv = self._update_kv_cache(kv, inference_params)
|
601 |
+
return self.inner_cross_attn(q, kv)
|
602 |
+
else:
|
603 |
+
batch = q.shape[0]
|
604 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
605 |
+
cache_seqlens = (
|
606 |
+
inference_params.lengths_per_sample[:batch]
|
607 |
+
if inference_params.lengths_per_sample is not None
|
608 |
+
else inference_params.seqlen_offset
|
609 |
+
)
|
610 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
611 |
+
return flash_attn_with_kvcache(
|
612 |
+
q,
|
613 |
+
kv_cache[:, :, 0],
|
614 |
+
kv_cache[:, :, 1],
|
615 |
+
kv[:, :, 0],
|
616 |
+
kv[:, :, 1],
|
617 |
+
cache_seqlens=cache_seqlens,
|
618 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
619 |
+
causal=self.inner_cross_attn.causal,
|
620 |
+
alibi_slopes=alibi_slopes,
|
621 |
+
)
|
622 |
+
|
623 |
+
def forward(
|
624 |
+
self,
|
625 |
+
x,
|
626 |
+
x_kv=None,
|
627 |
+
key_padding_mask=None,
|
628 |
+
cu_seqlens=None,
|
629 |
+
max_seqlen=None,
|
630 |
+
mixer_subset=None,
|
631 |
+
inference_params=None,
|
632 |
+
task_id=None,
|
633 |
+
**kwargs,
|
634 |
+
):
|
635 |
+
"""
|
636 |
+
Arguments:
|
637 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
638 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
639 |
+
is the is the sum of the sequence lengths in the batch.
|
640 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
641 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
642 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
643 |
+
FlashAttention.
|
644 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
645 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
646 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
647 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
648 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
649 |
+
about the CLS token in the last layer.
|
650 |
+
inference_params: for generation. Adapted from Megatron-LM (and Apex)
|
651 |
+
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
|
652 |
+
"""
|
653 |
+
if cu_seqlens is not None:
|
654 |
+
assert max_seqlen is not None
|
655 |
+
assert key_padding_mask is None
|
656 |
+
assert self.use_flash_attn
|
657 |
+
assert not self.dwconv
|
658 |
+
if key_padding_mask is not None:
|
659 |
+
assert cu_seqlens is None
|
660 |
+
assert max_seqlen is None
|
661 |
+
assert not self.use_flash_attn
|
662 |
+
if inference_params is not None:
|
663 |
+
assert key_padding_mask is None
|
664 |
+
assert cu_seqlens is None and max_seqlen is None
|
665 |
+
assert not self.dwconv
|
666 |
+
|
667 |
+
kwargs = (
|
668 |
+
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
|
669 |
+
if self.use_flash_attn
|
670 |
+
else {"key_padding_mask": key_padding_mask, **kwargs}
|
671 |
+
)
|
672 |
+
seqlen_offset = (
|
673 |
+
0
|
674 |
+
if inference_params is None
|
675 |
+
else (
|
676 |
+
inference_params.lengths_per_sample
|
677 |
+
if inference_params.lengths_per_sample is not None
|
678 |
+
else inference_params.seqlen_offset
|
679 |
+
)
|
680 |
+
)
|
681 |
+
rotary_max_seqlen = (
|
682 |
+
inference_params.max_sequence_len
|
683 |
+
if inference_params is not None
|
684 |
+
else max_seqlen
|
685 |
+
)
|
686 |
+
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
687 |
+
assert x_kv is None and mixer_subset is None
|
688 |
+
|
689 |
+
if task_id is not None:
|
690 |
+
if not self.return_residual:
|
691 |
+
qkv = self.Wqkv(x, task_id=task_id)
|
692 |
+
else:
|
693 |
+
qkv, _ = self.Wqkv(
|
694 |
+
x, task_id=task_id, residual=True
|
695 |
+
)
|
696 |
+
else:
|
697 |
+
if not self.return_residual:
|
698 |
+
qkv = self.Wqkv(x)
|
699 |
+
else:
|
700 |
+
if hasattr(self.Wqkv, "parametrizations"):
|
701 |
+
qkv, x = self.Wqkv(x, residual=True)
|
702 |
+
else:
|
703 |
+
qkv, x = self.Wqkv(x)
|
704 |
+
|
705 |
+
if self.dwconv:
|
706 |
+
qkv = rearrange(
|
707 |
+
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2],
|
708 |
+
"b d s -> b s d",
|
709 |
+
).contiguous()
|
710 |
+
qkv = rearrange(
|
711 |
+
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
712 |
+
)
|
713 |
+
if (
|
714 |
+
inference_params is None
|
715 |
+
or inference_params.seqlen_offset == 0
|
716 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
717 |
+
or not self.use_flash_attn
|
718 |
+
):
|
719 |
+
if self.rotary_emb_dim > 0:
|
720 |
+
qkv = self.rotary_emb(
|
721 |
+
qkv,
|
722 |
+
seqlen_offset=seqlen_offset,
|
723 |
+
cu_seqlens=cu_seqlens,
|
724 |
+
max_seqlen=rotary_max_seqlen,
|
725 |
+
)
|
726 |
+
if inference_params is None:
|
727 |
+
if not self.checkpointing:
|
728 |
+
context = self.inner_attn(qkv, **kwargs)
|
729 |
+
else:
|
730 |
+
context = torch.utils.checkpoint.checkpoint(
|
731 |
+
self.inner_attn, qkv, **kwargs
|
732 |
+
)
|
733 |
+
else:
|
734 |
+
context = self._update_kvcache_attention(
|
735 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
736 |
+
)
|
737 |
+
else:
|
738 |
+
context = self._apply_rotary_update_kvcache_attention(
|
739 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
if self.cross_attn:
|
743 |
+
if not self.return_residual:
|
744 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
745 |
+
kv = self.Wkv(x_kv if x_kv is not None else x)
|
746 |
+
else:
|
747 |
+
if x_kv is not None:
|
748 |
+
kv, x_kv = self.Wkv(x_kv)
|
749 |
+
else:
|
750 |
+
kv, x = self.Wkv(x)
|
751 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
752 |
+
else:
|
753 |
+
assert self.num_heads_kv != self.num_heads
|
754 |
+
if not self.return_residual:
|
755 |
+
qkv = self.Wqkv(x)
|
756 |
+
else:
|
757 |
+
qkv, x = self.Wqkv(x)
|
758 |
+
q = qkv[..., : self.num_heads * self.head_dim]
|
759 |
+
kv = qkv[..., self.num_heads * self.head_dim :]
|
760 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
761 |
+
kv = rearrange(
|
762 |
+
kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim
|
763 |
+
)
|
764 |
+
if self.dwconv:
|
765 |
+
q = rearrange(
|
766 |
+
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2],
|
767 |
+
"b d s -> b s d",
|
768 |
+
).contiguous()
|
769 |
+
kv = rearrange(
|
770 |
+
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2],
|
771 |
+
"b d s -> b s d",
|
772 |
+
).contiguous()
|
773 |
+
if (
|
774 |
+
inference_params is None
|
775 |
+
or inference_params.seqlen_offset == 0
|
776 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
777 |
+
or not self.use_flash_attn
|
778 |
+
):
|
779 |
+
if self.rotary_emb_dim > 0:
|
780 |
+
q, kv = self.rotary_emb(
|
781 |
+
q,
|
782 |
+
kv,
|
783 |
+
seqlen_offset=seqlen_offset,
|
784 |
+
cu_seqlens=cu_seqlens,
|
785 |
+
max_seqlen=rotary_max_seqlen,
|
786 |
+
)
|
787 |
+
if inference_params is None:
|
788 |
+
if not self.checkpointing:
|
789 |
+
context = self.inner_cross_attn(q, kv, **kwargs)
|
790 |
+
else:
|
791 |
+
context = torch.utils.checkpoint.checkpoint(
|
792 |
+
self.inner_cross_attn, q, kv, **kwargs
|
793 |
+
)
|
794 |
+
else:
|
795 |
+
context = self._update_kvcache_attention(q, kv, inference_params)
|
796 |
+
else:
|
797 |
+
context = self._apply_rotary_update_kvcache_attention(
|
798 |
+
q, kv, inference_params
|
799 |
+
)
|
800 |
+
|
801 |
+
inp = rearrange(context, "... h d -> ... (h d)")
|
802 |
+
if task_id is not None:
|
803 |
+
out = self.out_proj(inp, task_id=task_id)
|
804 |
+
else:
|
805 |
+
out = self.out_proj(inp)
|
806 |
+
return out if not self.return_residual else (out, x)
|
mlp.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mlp.py
|
2 |
+
# Commit id: c3b219665292c61a51153d0ded4473c494296382
|
3 |
+
|
4 |
+
# Copyright (c) 2023, Tri Dao.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.distributed import ProcessGroup
|
10 |
+
|
11 |
+
try:
|
12 |
+
from flash_attn.ops.activations import swiglu
|
13 |
+
except ImportError:
|
14 |
+
swiglu = None
|
15 |
+
|
16 |
+
try:
|
17 |
+
from flash_attn.ops.fused_dense import (ColumnParallelLinear,
|
18 |
+
RowParallelLinear)
|
19 |
+
except ImportError:
|
20 |
+
ColumnParallelLinear, RowParallelLinear = None, None
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn.ops.fused_dense import FusedMLP, ParallelFusedMLP
|
24 |
+
except ImportError:
|
25 |
+
FusedMLP, ParallelFusedMLP = None, None
|
26 |
+
|
27 |
+
|
28 |
+
class Mlp(nn.Module):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
in_features,
|
32 |
+
hidden_features=None,
|
33 |
+
out_features=None,
|
34 |
+
activation=F.gelu,
|
35 |
+
bias1=True,
|
36 |
+
bias2=True,
|
37 |
+
return_residual=False,
|
38 |
+
device=None,
|
39 |
+
dtype=None,
|
40 |
+
):
|
41 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
42 |
+
super().__init__()
|
43 |
+
out_features = out_features if out_features is not None else in_features
|
44 |
+
hidden_features = (
|
45 |
+
hidden_features if hidden_features is not None else in_features * 4
|
46 |
+
)
|
47 |
+
self.return_residual = return_residual
|
48 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
|
49 |
+
self.activation = activation
|
50 |
+
self.fc2 = nn.Linear(
|
51 |
+
hidden_features, out_features, bias=bias2, **factory_kwargs
|
52 |
+
)
|
53 |
+
|
54 |
+
def forward(self, x, task_id=None):
|
55 |
+
if task_id is not None:
|
56 |
+
y = self.fc1(x, task_id=task_id)
|
57 |
+
else:
|
58 |
+
y = self.fc1(x)
|
59 |
+
|
60 |
+
y = self.activation(y)
|
61 |
+
|
62 |
+
if task_id is not None:
|
63 |
+
out = self.fc2(y, task_id=task_id)
|
64 |
+
else:
|
65 |
+
out = self.fc2(y)
|
66 |
+
|
67 |
+
return out if not self.return_residual else (out, x)
|
68 |
+
|
69 |
+
|
70 |
+
class ParallelMLP(nn.Module):
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
in_features,
|
74 |
+
hidden_features=None,
|
75 |
+
out_features=None,
|
76 |
+
activation=F.gelu,
|
77 |
+
process_group: ProcessGroup = None,
|
78 |
+
sequence_parallel=True,
|
79 |
+
bias1=True,
|
80 |
+
bias2=True,
|
81 |
+
device=None,
|
82 |
+
dtype=None,
|
83 |
+
):
|
84 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
85 |
+
super().__init__()
|
86 |
+
assert ColumnParallelLinear is not None, "Need to install fused_dense"
|
87 |
+
assert RowParallelLinear is not None, "Need to install fused_dense"
|
88 |
+
out_features = out_features if out_features is not None else in_features
|
89 |
+
hidden_features = (
|
90 |
+
hidden_features if hidden_features is not None else in_features * 4
|
91 |
+
)
|
92 |
+
self.fc1 = ColumnParallelLinear(
|
93 |
+
in_features,
|
94 |
+
hidden_features,
|
95 |
+
process_group,
|
96 |
+
bias=bias1,
|
97 |
+
sequence_parallel=sequence_parallel,
|
98 |
+
**factory_kwargs,
|
99 |
+
)
|
100 |
+
self.activation = activation
|
101 |
+
self.fc2 = RowParallelLinear(
|
102 |
+
hidden_features,
|
103 |
+
out_features,
|
104 |
+
process_group,
|
105 |
+
bias=bias2,
|
106 |
+
sequence_parallel=sequence_parallel,
|
107 |
+
**factory_kwargs,
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
y = self.fc1(x)
|
112 |
+
y = self.activation(y)
|
113 |
+
y = self.fc2(y)
|
114 |
+
return y
|
115 |
+
|
116 |
+
|
117 |
+
class GatedMlp(nn.Module):
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
in_features,
|
121 |
+
hidden_features=None,
|
122 |
+
out_features=None,
|
123 |
+
activation=F.sigmoid,
|
124 |
+
bias1=True,
|
125 |
+
bias2=True,
|
126 |
+
multiple_of=128,
|
127 |
+
return_residual=False,
|
128 |
+
device=None,
|
129 |
+
dtype=None,
|
130 |
+
):
|
131 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
132 |
+
super().__init__()
|
133 |
+
out_features = out_features if out_features is not None else in_features
|
134 |
+
hidden_features = (
|
135 |
+
hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
136 |
+
)
|
137 |
+
hidden_features = (
|
138 |
+
(hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
139 |
+
)
|
140 |
+
self.return_residual = return_residual
|
141 |
+
self.fc1 = nn.Linear(
|
142 |
+
in_features, 2 * hidden_features, bias=bias1, **factory_kwargs
|
143 |
+
)
|
144 |
+
self.activation = activation
|
145 |
+
self.fc2 = nn.Linear(
|
146 |
+
hidden_features, out_features, bias=bias2, **factory_kwargs
|
147 |
+
)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
y = self.fc1(x)
|
151 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
152 |
+
y = F.glu(y, dim=-1)
|
153 |
+
elif (
|
154 |
+
self.activation == F.silu and swiglu is not None
|
155 |
+
): # Special case for SwiGLU
|
156 |
+
y, gate = y.chunk(2, dim=-1)
|
157 |
+
y = swiglu(gate, y)
|
158 |
+
else:
|
159 |
+
y, gate = y.chunk(2, dim=-1)
|
160 |
+
y = y * self.activation(gate)
|
161 |
+
y = self.fc2(y)
|
162 |
+
return y if not self.return_residual else (y, x)
|
163 |
+
|
164 |
+
|
165 |
+
class ParallelGatedMlp(nn.Module):
|
166 |
+
"""Parallel GatedMlp"""
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
in_features,
|
171 |
+
process_group,
|
172 |
+
hidden_features=None,
|
173 |
+
out_features=None,
|
174 |
+
activation=F.sigmoid,
|
175 |
+
bias1=True,
|
176 |
+
bias2=True,
|
177 |
+
multiple_of=128,
|
178 |
+
sequence_parallel=True,
|
179 |
+
device=None,
|
180 |
+
dtype=None,
|
181 |
+
):
|
182 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
183 |
+
super().__init__()
|
184 |
+
out_features = out_features if out_features is not None else in_features
|
185 |
+
hidden_features = (
|
186 |
+
hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
187 |
+
)
|
188 |
+
hidden_features = (
|
189 |
+
(hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
190 |
+
)
|
191 |
+
if ColumnParallelLinear is None or RowParallelLinear is None:
|
192 |
+
raise ImportError("fused_dense is not installed")
|
193 |
+
self.fc1 = ColumnParallelLinear(
|
194 |
+
in_features,
|
195 |
+
2 * hidden_features,
|
196 |
+
process_group,
|
197 |
+
bias=bias1,
|
198 |
+
sequence_parallel=sequence_parallel,
|
199 |
+
**factory_kwargs,
|
200 |
+
)
|
201 |
+
self.activation = activation
|
202 |
+
self.fc2 = RowParallelLinear(
|
203 |
+
hidden_features,
|
204 |
+
out_features,
|
205 |
+
process_group,
|
206 |
+
bias=bias2,
|
207 |
+
sequence_parallel=sequence_parallel,
|
208 |
+
**factory_kwargs,
|
209 |
+
)
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
y = self.fc1(x)
|
213 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
214 |
+
y = F.glu(y, dim=-1)
|
215 |
+
else:
|
216 |
+
y, gate = y.chunk(2, dim=-1)
|
217 |
+
y = y * self.activation(gate)
|
218 |
+
y = self.fc2(y)
|
219 |
+
return y
|
modeling_lora.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from functools import partial
|
4 |
+
from typing import Iterator, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.utils.parametrize as parametrize
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import Parameter
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from transformers import PretrainedConfig
|
13 |
+
|
14 |
+
from .rotary import RotaryEmbedding
|
15 |
+
from .modeling_xlm_roberta import (XLMRobertaFlashConfig, XLMRobertaModel,
|
16 |
+
XLMRobertaPreTrainedModel)
|
17 |
+
|
18 |
+
|
19 |
+
def initialized_weights(
|
20 |
+
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
|
21 |
+
) -> torch.Tensor:
|
22 |
+
weight_data = []
|
23 |
+
for _ in range(num_adaptations):
|
24 |
+
new_adaption = torch.zeros(shape)
|
25 |
+
if init == "kaiming":
|
26 |
+
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
27 |
+
elif init == "normal":
|
28 |
+
nn.init.normal_(new_adaption)
|
29 |
+
else:
|
30 |
+
raise NotImplementedError
|
31 |
+
weight_data.append(new_adaption)
|
32 |
+
return torch.stack(weight_data, dim=0)
|
33 |
+
|
34 |
+
|
35 |
+
class LoRAParametrization(nn.Module):
|
36 |
+
"""
|
37 |
+
This LoRA implementation was inspired by https://github.com/cccntu/minLoRA
|
38 |
+
The MIT License (MIT) Copyright (c) 2020 Andrej Karpathy
|
39 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
|
40 |
+
and associated documentation files (the "Software"), to deal in the Software without restriction,
|
41 |
+
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
42 |
+
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
43 |
+
subject to the following conditions:
|
44 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial
|
45 |
+
portions of the Software.
|
46 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
|
47 |
+
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
48 |
+
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
49 |
+
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
50 |
+
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
fan_in: int,
|
56 |
+
fan_out: int,
|
57 |
+
layer_type: str = "linear",
|
58 |
+
num_adaptations: int = 1,
|
59 |
+
rank: int = 4,
|
60 |
+
dropout_p: float = 0.0,
|
61 |
+
alpha: float = 1,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
65 |
+
# otherwise, it's x(W + AB). This allows us to tie the weights between linear layers and embeddings
|
66 |
+
fan_in_fan_out = layer_type == "embedding"
|
67 |
+
self.swap = (lambda x: (x[1], x[0])) if fan_in_fan_out else (lambda x: x)
|
68 |
+
|
69 |
+
if layer_type == "linear":
|
70 |
+
self.lora_A = nn.Parameter(
|
71 |
+
initialized_weights((rank, fan_in), num_adaptations, init="kaiming")
|
72 |
+
)
|
73 |
+
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank)))
|
74 |
+
elif layer_type == "embedding":
|
75 |
+
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank)))
|
76 |
+
self.lora_B = nn.Parameter(
|
77 |
+
initialized_weights(
|
78 |
+
(rank, fan_out), num_adaptations=num_adaptations, init="normal"
|
79 |
+
)
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise NotImplementedError
|
83 |
+
|
84 |
+
self.lora_alpha, self.rank = alpha, rank
|
85 |
+
self.scaling = alpha / rank
|
86 |
+
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x
|
87 |
+
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x
|
88 |
+
self.register_buffer(
|
89 |
+
"lora_dropout_mask",
|
90 |
+
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
91 |
+
persistent=False,
|
92 |
+
)
|
93 |
+
|
94 |
+
def _dropout(self, A):
|
95 |
+
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
|
96 |
+
return A * self.lora_dropout(self.lora_dropout_mask)
|
97 |
+
|
98 |
+
def lora_forward(self, X, current_task):
|
99 |
+
return (
|
100 |
+
X
|
101 |
+
+ torch.matmul(
|
102 |
+
*self.swap(
|
103 |
+
(
|
104 |
+
self.lora_B[current_task],
|
105 |
+
self.dropout_fn(self.lora_A[current_task]),
|
106 |
+
)
|
107 |
+
)
|
108 |
+
).view(X.shape)
|
109 |
+
* self.scaling
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, X):
|
113 |
+
return X
|
114 |
+
|
115 |
+
@classmethod
|
116 |
+
def from_linear(
|
117 |
+
cls,
|
118 |
+
layer: nn.Module,
|
119 |
+
num_adaptations: int,
|
120 |
+
rank: int,
|
121 |
+
dropout_p: float,
|
122 |
+
alpha: float,
|
123 |
+
):
|
124 |
+
assert isinstance(layer, nn.Linear)
|
125 |
+
fan_out, fan_in = layer.weight.shape
|
126 |
+
return cls(
|
127 |
+
fan_in,
|
128 |
+
fan_out,
|
129 |
+
num_adaptations=num_adaptations,
|
130 |
+
layer_type="linear",
|
131 |
+
rank=rank,
|
132 |
+
dropout_p=dropout_p,
|
133 |
+
alpha=alpha,
|
134 |
+
)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def from_embedding(
|
138 |
+
cls,
|
139 |
+
layer: nn.Module,
|
140 |
+
num_adaptations: int,
|
141 |
+
rank: int,
|
142 |
+
dropout_p: float,
|
143 |
+
alpha: float,
|
144 |
+
):
|
145 |
+
assert isinstance(layer, nn.Embedding)
|
146 |
+
fan_in, fan_out = layer.weight.shape
|
147 |
+
return cls(
|
148 |
+
fan_in,
|
149 |
+
fan_out,
|
150 |
+
num_adaptations=num_adaptations,
|
151 |
+
layer_type="embedding",
|
152 |
+
rank=rank,
|
153 |
+
dropout_p=dropout_p,
|
154 |
+
alpha=alpha,
|
155 |
+
)
|
156 |
+
|
157 |
+
@classmethod
|
158 |
+
def add_to_layer(
|
159 |
+
cls,
|
160 |
+
layer: nn.Module,
|
161 |
+
num_adaptations: int,
|
162 |
+
rank: int,
|
163 |
+
dropout_p: float,
|
164 |
+
alpha: float,
|
165 |
+
):
|
166 |
+
"""
|
167 |
+
Registering LoRA adapters to all embedding and linear layers.
|
168 |
+
Additionally, we implement a custom forward function for LoRA parametrization.
|
169 |
+
This function modifies the layer's forward pass to optionally use task-specific
|
170 |
+
parameters. When a `task_id` is provided, it employs a LoRA parametrization
|
171 |
+
to modify the original weights according to the specific task. This allows
|
172 |
+
the layer to adapt dynamically to different tasks at runtime. If no `task_id`
|
173 |
+
is specified, the layer uses its original weights.
|
174 |
+
"""
|
175 |
+
if isinstance(layer, nn.Linear):
|
176 |
+
parametrize.register_parametrization(
|
177 |
+
layer,
|
178 |
+
"weight",
|
179 |
+
cls.from_linear(
|
180 |
+
layer,
|
181 |
+
num_adaptations=num_adaptations,
|
182 |
+
rank=rank,
|
183 |
+
dropout_p=dropout_p,
|
184 |
+
alpha=alpha,
|
185 |
+
),
|
186 |
+
)
|
187 |
+
|
188 |
+
def new_forward(self, input, task_id=None, residual=False):
|
189 |
+
if task_id is not None:
|
190 |
+
weights = self.parametrizations.weight[0].lora_forward(
|
191 |
+
self.weight, current_task=task_id
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
weights = self.weight
|
195 |
+
|
196 |
+
out = F.linear(input, weights, self.bias)
|
197 |
+
|
198 |
+
if residual:
|
199 |
+
return out, input
|
200 |
+
return out
|
201 |
+
|
202 |
+
layer.forward = new_forward.__get__(layer, layer.__class__)
|
203 |
+
|
204 |
+
elif isinstance(layer, nn.Embedding):
|
205 |
+
parametrize.register_parametrization(
|
206 |
+
layer,
|
207 |
+
"weight",
|
208 |
+
cls.from_embedding(
|
209 |
+
layer,
|
210 |
+
num_adaptations=num_adaptations,
|
211 |
+
rank=rank,
|
212 |
+
dropout_p=dropout_p,
|
213 |
+
alpha=alpha,
|
214 |
+
),
|
215 |
+
)
|
216 |
+
|
217 |
+
def new_forward(self, input, task_id=None):
|
218 |
+
if task_id is not None:
|
219 |
+
weights = self.parametrizations.weight[0].lora_forward(
|
220 |
+
self.weight, current_task=task_id
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
weights = self.weight
|
224 |
+
|
225 |
+
out = F.embedding(
|
226 |
+
input,
|
227 |
+
weights,
|
228 |
+
self.padding_idx,
|
229 |
+
self.max_norm,
|
230 |
+
self.norm_type,
|
231 |
+
self.scale_grad_by_freq,
|
232 |
+
self.sparse,
|
233 |
+
)
|
234 |
+
|
235 |
+
return out
|
236 |
+
|
237 |
+
layer.forward = new_forward.__get__(layer, layer.__class__)
|
238 |
+
|
239 |
+
|
240 |
+
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
241 |
+
"""
|
242 |
+
A wrapper class around the Jina XLM-RoBERTa model that integrates LoRA (Low-Rank Adaptation) adapters.
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(
|
246 |
+
self, config: XLMRobertaFlashConfig, roberta: Optional[XLMRobertaModel] = None
|
247 |
+
):
|
248 |
+
super().__init__(config)
|
249 |
+
if roberta is None:
|
250 |
+
self.roberta = XLMRobertaModel(config)
|
251 |
+
else:
|
252 |
+
self.roberta = roberta
|
253 |
+
|
254 |
+
self._lora_adaptations = config.lora_adaptations
|
255 |
+
if (
|
256 |
+
not isinstance(self._lora_adaptations, list)
|
257 |
+
or len(self._lora_adaptations) < 1
|
258 |
+
):
|
259 |
+
raise ValueError(
|
260 |
+
f"`lora_adaptations` must be a list and contain at least one element"
|
261 |
+
)
|
262 |
+
self._task_instructions = config.task_instructions
|
263 |
+
if (
|
264 |
+
not isinstance(self._task_instructions, dict)
|
265 |
+
or len(self._task_instructions) != len(self._lora_adaptations)
|
266 |
+
or not all(
|
267 |
+
[v in self._lora_adaptations for v in self._task_instructions.keys()]
|
268 |
+
)
|
269 |
+
):
|
270 |
+
raise ValueError(
|
271 |
+
f"`task_instructions` must be a dict and contain the same number of elements "
|
272 |
+
f"as `lora_adaptations` with all keys in `task_instructions` present in `lora_adaptations`."
|
273 |
+
)
|
274 |
+
self._adaptation_map = {
|
275 |
+
name: idx for idx, name in enumerate(self._lora_adaptations)
|
276 |
+
}
|
277 |
+
self._rank = config.lora_rank
|
278 |
+
self._dropout_p = config.lora_dropout_p
|
279 |
+
self._alpha = config.lora_alpha
|
280 |
+
self._register_lora(
|
281 |
+
num_adaptations=len(self._lora_adaptations),
|
282 |
+
rank=self._rank,
|
283 |
+
dropout_p=self._dropout_p,
|
284 |
+
alpha=self._alpha,
|
285 |
+
)
|
286 |
+
self.main_params_trainable = config.lora_main_params_trainable
|
287 |
+
|
288 |
+
@property
|
289 |
+
def rotary_emb_base(self):
|
290 |
+
return self.roberta.rotary_emb_base
|
291 |
+
|
292 |
+
@rotary_emb_base.setter
|
293 |
+
def rotary_emb_base(self, base):
|
294 |
+
self.roberta.rotary_emb_base = base
|
295 |
+
|
296 |
+
@property
|
297 |
+
def main_params_trainable(self):
|
298 |
+
return self._main_params_trainable
|
299 |
+
|
300 |
+
@main_params_trainable.setter
|
301 |
+
def main_params_trainable(self, val: bool):
|
302 |
+
"""Whether the main parameters (i.e. those that are not LoRA) should be trainable.
|
303 |
+
This method sets the `requires_grad_` attribute of the main weights
|
304 |
+
and controls which parameters are returned in `self.parameters()`.
|
305 |
+
:param val: Whether or not to make the parameters trainable.
|
306 |
+
:return: None
|
307 |
+
"""
|
308 |
+
self._main_params_trainable = val
|
309 |
+
for name, param in super().named_parameters():
|
310 |
+
if "lora" not in name:
|
311 |
+
param.requires_grad_(val)
|
312 |
+
|
313 |
+
@classmethod
|
314 |
+
def from_pretrained(
|
315 |
+
cls,
|
316 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
317 |
+
*model_args,
|
318 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
319 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
320 |
+
ignore_mismatched_sizes: bool = False,
|
321 |
+
force_download: bool = False,
|
322 |
+
local_files_only: bool = False,
|
323 |
+
token: Optional[Union[str, bool]] = None,
|
324 |
+
revision: str = "main",
|
325 |
+
use_safetensors: bool = None,
|
326 |
+
**kwargs,
|
327 |
+
):
|
328 |
+
if config.load_trained_adapters: # checkpoint already contains LoRA adapters
|
329 |
+
return super().from_pretrained(
|
330 |
+
pretrained_model_name_or_path, *model_args, use_flash_attn=config.use_flash_attn, **kwargs
|
331 |
+
)
|
332 |
+
else: # initializing new adapters
|
333 |
+
roberta = XLMRobertaModel.from_pretrained(
|
334 |
+
pretrained_model_name_or_path, *model_args, use_flash_attn=config.use_flash_attn, **kwargs
|
335 |
+
)
|
336 |
+
return cls(config, roberta=roberta)
|
337 |
+
|
338 |
+
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
339 |
+
self.apply(
|
340 |
+
partial(
|
341 |
+
LoRAParametrization.add_to_layer,
|
342 |
+
num_adaptations=num_adaptations,
|
343 |
+
rank=rank,
|
344 |
+
dropout_p=dropout_p,
|
345 |
+
alpha=alpha,
|
346 |
+
)
|
347 |
+
)
|
348 |
+
|
349 |
+
def forward(self, *args, **kwargs):
|
350 |
+
return self.roberta(*args, **kwargs)
|
351 |
+
|
352 |
+
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
353 |
+
for _, param in self.named_parameters(recurse=recurse):
|
354 |
+
yield param
|
355 |
+
|
356 |
+
def named_parameters(
|
357 |
+
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
|
358 |
+
) -> Iterator[Tuple[str, Parameter]]:
|
359 |
+
for name, param in super().named_parameters(
|
360 |
+
prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate
|
361 |
+
):
|
362 |
+
if "lora" in name or self.main_params_trainable:
|
363 |
+
yield name, param
|
364 |
+
|
365 |
+
@torch.inference_mode()
|
366 |
+
def encode(
|
367 |
+
self,
|
368 |
+
sentences: Union[str, List[str]],
|
369 |
+
*args,
|
370 |
+
task_type: Optional[str] = None,
|
371 |
+
**kwargs,
|
372 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
373 |
+
"""
|
374 |
+
Computes sentence embeddings.
|
375 |
+
sentences(`str` or `List[str]`):
|
376 |
+
Sentence or sentences to be encoded
|
377 |
+
task_type(`str`, *optional*, defaults to `None`):
|
378 |
+
Specifies the task for which the encoding is intended. If `task_type` is not provided,
|
379 |
+
all LoRA adapters are disabled, and the model reverts to its original,
|
380 |
+
general-purpose weights.
|
381 |
+
"""
|
382 |
+
if task_type and task_type not in self._lora_adaptations:
|
383 |
+
raise ValueError(
|
384 |
+
f"Unsupported task '{task_type}'. "
|
385 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
386 |
+
f"Alternatively, don't pass the `task_type` argument to disable LoRA."
|
387 |
+
)
|
388 |
+
adapter_mask = None
|
389 |
+
if task_type:
|
390 |
+
task_id = self._adaptation_map[task_type]
|
391 |
+
num_examples = 1 if isinstance(sentences, str) else len(sentences)
|
392 |
+
adapter_mask = torch.full(
|
393 |
+
(num_examples,), task_id, dtype=torch.int32, device=self.device
|
394 |
+
)
|
395 |
+
if isinstance(sentences, str):
|
396 |
+
sentences = self._task_instructions[task_type] + sentences
|
397 |
+
else:
|
398 |
+
sentences = [self._task_instructions[task_type] + sentence for sentence in sentences]
|
399 |
+
return self.roberta.encode(
|
400 |
+
sentences, *args, adapter_mask=adapter_mask, **kwargs
|
401 |
+
)
|
modeling_xlm_roberta.py
ADDED
@@ -0,0 +1,1208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
|
2 |
+
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
+
# Copyright (c) 2022, Tri Dao.
|
4 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
5 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
6 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
7 |
+
|
8 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
+
|
10 |
+
import importlib.util
|
11 |
+
import logging
|
12 |
+
import re
|
13 |
+
from collections import OrderedDict
|
14 |
+
from collections.abc import Sequence
|
15 |
+
from functools import partial
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
25 |
+
from transformers.modeling_outputs import (MaskedLMOutput,
|
26 |
+
SequenceClassifierOutput)
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.models.bert.modeling_bert import (
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput)
|
30 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import \
|
31 |
+
XLMRobertaLMHead
|
32 |
+
|
33 |
+
from .rotary import RotaryEmbedding
|
34 |
+
from .block import Block
|
35 |
+
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
36 |
+
from .embedding import XLMRobertaEmbeddings
|
37 |
+
from .mha import MHA
|
38 |
+
from .mlp import FusedMLP, Mlp
|
39 |
+
from .xlm_padding import index_first_axis_residual, pad_input, unpad_input
|
40 |
+
|
41 |
+
try:
|
42 |
+
from flash_attn.ops.fused_dense import FusedDense
|
43 |
+
except ImportError:
|
44 |
+
FusedDense = None
|
45 |
+
|
46 |
+
try:
|
47 |
+
from flash_attn.ops.triton.layer_norm import layer_norm_fn
|
48 |
+
except ImportError:
|
49 |
+
layer_norm_fn = None
|
50 |
+
|
51 |
+
|
52 |
+
try:
|
53 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
54 |
+
except ImportError:
|
55 |
+
CrossEntropyLoss = torch.nn.CrossEntropyLoss
|
56 |
+
|
57 |
+
try:
|
58 |
+
from tqdm.autonotebook import trange
|
59 |
+
except ImportError:
|
60 |
+
trange = None
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.getLogger(__name__)
|
64 |
+
|
65 |
+
|
66 |
+
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
67 |
+
if not getattr(config, "use_flash_attn", False) or not torch.cuda.is_available():
|
68 |
+
return False
|
69 |
+
if importlib.util.find_spec("flash_attn") is None:
|
70 |
+
logger.warning(
|
71 |
+
"flash_attn is not installed. Using PyTorch native attention implementation."
|
72 |
+
)
|
73 |
+
return False
|
74 |
+
return True
|
75 |
+
|
76 |
+
|
77 |
+
def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
78 |
+
use_flash_attn = get_use_flash_attn(config)
|
79 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
80 |
+
rotary_kwargs = {}
|
81 |
+
if config.position_embedding_type == "rotary":
|
82 |
+
rotary_kwargs["rotary_emb_dim"] = getattr(
|
83 |
+
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads
|
84 |
+
)
|
85 |
+
rotary_kwargs["rotary_emb_base"] = config.rotary_emb_base
|
86 |
+
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
87 |
+
config, "rotary_emb_scale_base", None
|
88 |
+
)
|
89 |
+
rotary_kwargs["rotary_emb_interleaved"] = getattr(
|
90 |
+
config, "rotary_emb_interleaved", False
|
91 |
+
)
|
92 |
+
mixer_cls = partial(
|
93 |
+
MHA,
|
94 |
+
num_heads=config.num_attention_heads,
|
95 |
+
cross_attn=cross_attn,
|
96 |
+
dropout=config.attention_probs_dropout_prob,
|
97 |
+
causal=False,
|
98 |
+
fused_bias_fc=fused_bias_fc,
|
99 |
+
use_flash_attn=use_flash_attn,
|
100 |
+
return_residual=return_residual,
|
101 |
+
use_alibi=config.position_embedding_type == "alibi",
|
102 |
+
**rotary_kwargs,
|
103 |
+
)
|
104 |
+
return mixer_cls
|
105 |
+
|
106 |
+
|
107 |
+
def create_mlp_cls(config, layer_idx=None, return_residual=False):
|
108 |
+
inner_dim = config.intermediate_size
|
109 |
+
fused_mlp = getattr(config, "fused_mlp", False)
|
110 |
+
if fused_mlp:
|
111 |
+
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
|
112 |
+
"fused_mlp only " "supports approximate gelu"
|
113 |
+
)
|
114 |
+
if not fused_mlp:
|
115 |
+
approximate = (
|
116 |
+
"tanh"
|
117 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
118 |
+
else "none"
|
119 |
+
)
|
120 |
+
mlp_cls = partial(
|
121 |
+
Mlp,
|
122 |
+
hidden_features=inner_dim,
|
123 |
+
activation=partial(F.gelu, approximate=approximate),
|
124 |
+
return_residual=return_residual,
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
if FusedMLP is None:
|
128 |
+
raise ImportError("fused_dense is not installed")
|
129 |
+
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
|
130 |
+
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
|
131 |
+
if isinstance(mlp_checkpoint_lvl, Sequence):
|
132 |
+
assert layer_idx is not None
|
133 |
+
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
|
134 |
+
mlp_cls = partial(
|
135 |
+
FusedMLP,
|
136 |
+
hidden_features=inner_dim,
|
137 |
+
checkpoint_lvl=mlp_checkpoint_lvl,
|
138 |
+
return_residual=return_residual,
|
139 |
+
)
|
140 |
+
return mlp_cls
|
141 |
+
|
142 |
+
|
143 |
+
def create_block(config, layer_idx=None):
|
144 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
145 |
+
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
|
146 |
+
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
|
147 |
+
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
|
148 |
+
# one layer) so we just choose not to return residual in this case.
|
149 |
+
return_residual = not cross_attn
|
150 |
+
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
|
151 |
+
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
|
152 |
+
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
|
153 |
+
block = Block(
|
154 |
+
config.hidden_size,
|
155 |
+
mixer_cls,
|
156 |
+
mlp_cls,
|
157 |
+
norm_cls=norm_cls,
|
158 |
+
prenorm=False,
|
159 |
+
resid_dropout1=config.hidden_dropout_prob,
|
160 |
+
resid_dropout2=config.hidden_dropout_prob,
|
161 |
+
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
|
162 |
+
return_residual=return_residual,
|
163 |
+
)
|
164 |
+
return block
|
165 |
+
|
166 |
+
|
167 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
168 |
+
def _init_weights(module, initializer_range=0.02):
|
169 |
+
if isinstance(module, nn.Linear):
|
170 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
171 |
+
if module.bias is not None:
|
172 |
+
nn.init.zeros_(module.bias)
|
173 |
+
elif isinstance(module, nn.Embedding):
|
174 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
175 |
+
if module.padding_idx is not None:
|
176 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
177 |
+
|
178 |
+
|
179 |
+
class XLMRobertaEncoder(nn.Module):
|
180 |
+
def __init__(self, config: XLMRobertaFlashConfig):
|
181 |
+
super().__init__()
|
182 |
+
self.use_flash_attn = get_use_flash_attn(config)
|
183 |
+
self.use_reentrant = config.use_reentrant
|
184 |
+
self.layers = nn.ModuleList(
|
185 |
+
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
186 |
+
)
|
187 |
+
self._grad_checkpointing = False
|
188 |
+
|
189 |
+
@property
|
190 |
+
def gradient_checkpointing(self):
|
191 |
+
return self._grad_checkpointing
|
192 |
+
|
193 |
+
@gradient_checkpointing.setter
|
194 |
+
def gradient_checkpointing(self, value):
|
195 |
+
self._grad_checkpointing = value
|
196 |
+
|
197 |
+
def forward(
|
198 |
+
self, hidden_states, key_padding_mask=None, subset_mask=None, task_id=None
|
199 |
+
):
|
200 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
201 |
+
This means that we only compute the last layer output for these tokens.
|
202 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
203 |
+
"""
|
204 |
+
if key_padding_mask is None or not self.use_flash_attn:
|
205 |
+
mixer_kwargs = {"task_id": task_id}
|
206 |
+
if key_padding_mask is not None:
|
207 |
+
mixer_kwargs["key_padding_mask"] = key_padding_mask.bool()
|
208 |
+
for layer in self.layers:
|
209 |
+
if self._grad_checkpointing:
|
210 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
211 |
+
layer,
|
212 |
+
hidden_states,
|
213 |
+
use_reentrant=self.use_reentrant,
|
214 |
+
mixer_kwargs=mixer_kwargs,
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
218 |
+
if subset_mask is not None:
|
219 |
+
hidden_states = hidden_states[subset_mask]
|
220 |
+
else:
|
221 |
+
batch, seqlen = hidden_states.shape[:2]
|
222 |
+
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = (
|
223 |
+
unpad_input(hidden_states, key_padding_mask)
|
224 |
+
)
|
225 |
+
mixer_kwargs = {
|
226 |
+
"cu_seqlens": cu_seqlens,
|
227 |
+
"max_seqlen": max_seqlen_in_batch,
|
228 |
+
"task_id": task_id,
|
229 |
+
}
|
230 |
+
|
231 |
+
if subset_mask is None:
|
232 |
+
for layer in self.layers:
|
233 |
+
if self._grad_checkpointing:
|
234 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
235 |
+
layer,
|
236 |
+
hidden_states,
|
237 |
+
use_reentrant=self.use_reentrant,
|
238 |
+
mixer_kwargs=mixer_kwargs,
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
242 |
+
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
243 |
+
else:
|
244 |
+
for layer in self.layers[:-1]:
|
245 |
+
if self._grad_checkpointing:
|
246 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
247 |
+
layer,
|
248 |
+
hidden_states,
|
249 |
+
use_reentrant=self.use_reentrant,
|
250 |
+
mixer_kwargs=mixer_kwargs,
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
254 |
+
if key_padding_mask is not None:
|
255 |
+
subset_idx = torch.nonzero(
|
256 |
+
subset_mask[key_padding_mask], as_tuple=False
|
257 |
+
).flatten()
|
258 |
+
subset_seqlens = (subset_mask & key_padding_mask).sum(
|
259 |
+
dim=-1, dtype=torch.int32
|
260 |
+
)
|
261 |
+
subset_cu_seqlens = F.pad(
|
262 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
|
263 |
+
(1, 0),
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
|
267 |
+
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
|
268 |
+
subset_cu_seqlens = F.pad(
|
269 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32),
|
270 |
+
(1, 0),
|
271 |
+
)
|
272 |
+
hidden_states_subset, hidden_states = index_first_axis_residual(
|
273 |
+
hidden_states, subset_idx
|
274 |
+
)
|
275 |
+
# It's ok to set max_seqlen_q to be much larger
|
276 |
+
mixer_kwargs = {
|
277 |
+
"x_kv": hidden_states,
|
278 |
+
"cu_seqlens": subset_cu_seqlens,
|
279 |
+
"max_seqlen": max_seqlen_in_batch,
|
280 |
+
"cu_seqlens_k": cu_seqlens,
|
281 |
+
"max_seqlen_k": max_seqlen_in_batch,
|
282 |
+
}
|
283 |
+
if self._grad_checkpointing:
|
284 |
+
torch.utils.checkpoint.checkpoint(
|
285 |
+
self.layers[-1],
|
286 |
+
hidden_states_subset,
|
287 |
+
use_reentrant=self.use_reentrant,
|
288 |
+
mixer_kwargs=mixer_kwargs,
|
289 |
+
)
|
290 |
+
else:
|
291 |
+
hidden_states = self.layers[-1](
|
292 |
+
hidden_states_subset, mixer_kwargs=mixer_kwargs
|
293 |
+
)
|
294 |
+
return hidden_states
|
295 |
+
|
296 |
+
|
297 |
+
class XLMRobertaPooler(nn.Module):
|
298 |
+
def __init__(self, config):
|
299 |
+
super().__init__()
|
300 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
301 |
+
if fused_bias_fc and FusedDense is None:
|
302 |
+
raise ImportError("fused_dense is not installed")
|
303 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
304 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
305 |
+
self.activation = nn.Tanh()
|
306 |
+
|
307 |
+
def forward(self, hidden_states, pool=True, task_id=None):
|
308 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
309 |
+
# to the first token.
|
310 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
311 |
+
if task_id is not None:
|
312 |
+
pooled_output = self.dense(
|
313 |
+
first_token_tensor, task_id=task_id
|
314 |
+
)
|
315 |
+
else:
|
316 |
+
pooled_output = self.dense(first_token_tensor)
|
317 |
+
pooled_output = self.activation(pooled_output)
|
318 |
+
return pooled_output
|
319 |
+
|
320 |
+
|
321 |
+
class XLMRobertaPredictionHeadTransform(nn.Module):
|
322 |
+
def __init__(self, config):
|
323 |
+
super().__init__()
|
324 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
325 |
+
if fused_bias_fc and FusedDense is None:
|
326 |
+
raise ImportError("fused_dense is not installed")
|
327 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
328 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
329 |
+
raise ImportError("Triton is not installed")
|
330 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
331 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
332 |
+
approximate = (
|
333 |
+
"tanh"
|
334 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
335 |
+
else "none"
|
336 |
+
)
|
337 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
338 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
339 |
+
|
340 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
341 |
+
hidden_states = self.dense(hidden_states)
|
342 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
343 |
+
if not self.fused_dropout_add_ln:
|
344 |
+
hidden_states = self.layer_norm(hidden_states)
|
345 |
+
else:
|
346 |
+
hidden_states = layer_norm_fn(
|
347 |
+
hidden_states,
|
348 |
+
self.layer_norm.weight,
|
349 |
+
self.layer_norm.bias,
|
350 |
+
eps=self.layer_norm.eps,
|
351 |
+
)
|
352 |
+
return hidden_states
|
353 |
+
|
354 |
+
|
355 |
+
class XLMRobertaLMPredictionHead(nn.Module):
|
356 |
+
def __init__(self, config):
|
357 |
+
super().__init__()
|
358 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
359 |
+
if fused_bias_fc and FusedDense is None:
|
360 |
+
raise ImportError("fused_dense is not installed")
|
361 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
362 |
+
|
363 |
+
self.transform = XLMRobertaPredictionHeadTransform(config)
|
364 |
+
|
365 |
+
# The output weights are the same as the input embeddings, but there is
|
366 |
+
# an output-only bias for each token.
|
367 |
+
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
|
368 |
+
|
369 |
+
def forward(self, hidden_states):
|
370 |
+
hidden_states = self.transform(hidden_states)
|
371 |
+
hidden_states = self.decoder(hidden_states)
|
372 |
+
return hidden_states
|
373 |
+
|
374 |
+
|
375 |
+
class XLMRobertaPreTrainingHeads(nn.Module):
|
376 |
+
def __init__(self, config):
|
377 |
+
super().__init__()
|
378 |
+
self.predictions = XLMRobertaLMPredictionHead(config)
|
379 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
380 |
+
|
381 |
+
def forward(self, sequence_output, pooled_output):
|
382 |
+
prediction_scores = self.predictions(sequence_output)
|
383 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
384 |
+
return prediction_scores, seq_relationship_score
|
385 |
+
|
386 |
+
|
387 |
+
class XLMRobertaPreTrainedModel(PreTrainedModel):
|
388 |
+
"""An abstract class to handle weights initialization and
|
389 |
+
a simple interface for dowloading and loading pretrained models.
|
390 |
+
"""
|
391 |
+
|
392 |
+
config_class = XLMRobertaFlashConfig
|
393 |
+
base_model_prefix = "roberta"
|
394 |
+
supports_gradient_checkpointing = True
|
395 |
+
_supports_param_buffer_assignment = False
|
396 |
+
|
397 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
398 |
+
if isinstance(module, XLMRobertaEncoder):
|
399 |
+
module.gradient_checkpointing = value
|
400 |
+
|
401 |
+
@classmethod
|
402 |
+
def from_pretrained(
|
403 |
+
cls,
|
404 |
+
*args,
|
405 |
+
**kwargs,
|
406 |
+
):
|
407 |
+
if not "torch_dtype" in kwargs:
|
408 |
+
kwargs["torch_dtype"] = "auto"
|
409 |
+
return super().from_pretrained(*args, **kwargs)
|
410 |
+
|
411 |
+
|
412 |
+
class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
413 |
+
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
|
414 |
+
super().__init__(config)
|
415 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
416 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
417 |
+
config.vocab_size += self.pad_vocab_size_multiple - (
|
418 |
+
config.vocab_size % self.pad_vocab_size_multiple
|
419 |
+
)
|
420 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
421 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
422 |
+
raise ImportError("Triton is not installed")
|
423 |
+
assert config.hidden_act in [
|
424 |
+
"gelu",
|
425 |
+
"gelu_new",
|
426 |
+
"gelu_fast",
|
427 |
+
"gelu_pytorch_tanh",
|
428 |
+
]
|
429 |
+
self.embeddings = XLMRobertaEmbeddings(
|
430 |
+
config.hidden_size,
|
431 |
+
config.vocab_size,
|
432 |
+
(
|
433 |
+
config.max_position_embeddings
|
434 |
+
if config.position_embedding_type == "absolute"
|
435 |
+
else -1
|
436 |
+
),
|
437 |
+
config.type_vocab_size,
|
438 |
+
padding_idx=config.pad_token_id,
|
439 |
+
)
|
440 |
+
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
|
441 |
+
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
442 |
+
self.encoder = XLMRobertaEncoder(config)
|
443 |
+
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
|
444 |
+
|
445 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
446 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
447 |
+
self.name_or_path, trust_remote_code=True
|
448 |
+
)
|
449 |
+
self._rotary_emb_base = config.rotary_emb_base
|
450 |
+
|
451 |
+
@torch.inference_mode()
|
452 |
+
def encode(
|
453 |
+
self: "XLMRobertaModel",
|
454 |
+
sentences: Union[str, List[str]],
|
455 |
+
batch_size: int = 32,
|
456 |
+
show_progress_bar: Optional[bool] = None,
|
457 |
+
output_value: str = "sentence_embedding",
|
458 |
+
convert_to_numpy: bool = True,
|
459 |
+
convert_to_tensor: bool = False,
|
460 |
+
device: Optional[torch.device] = None,
|
461 |
+
normalize_embeddings: bool = False,
|
462 |
+
truncate_dim: Optional[int] = None,
|
463 |
+
adapter_mask: Optional[torch.Tensor] = None,
|
464 |
+
task_type: Optional[str] = None,
|
465 |
+
**tokenizer_kwargs,
|
466 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
467 |
+
"""
|
468 |
+
Computes sentence embeddings
|
469 |
+
Args:
|
470 |
+
sentences(`str` or `List[str]`):
|
471 |
+
Sentence or sentences to be encoded
|
472 |
+
batch_size(`int`, *optional*, defaults to 32):
|
473 |
+
Batch size for the computation
|
474 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
475 |
+
Show a progress bar when encoding sentences.
|
476 |
+
If set to None, progress bar is only shown when
|
477 |
+
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`.
|
478 |
+
output_value(`str`, *optional*, defaults to 'sentence_embedding'):
|
479 |
+
Default sentence_embedding, to get sentence embeddings.
|
480 |
+
Can be set to token_embeddings to get wordpiece token embeddings.
|
481 |
+
Set to None, to get all output values
|
482 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
483 |
+
If true, the output is a list of numpy vectors.
|
484 |
+
Else, it is a list of pytorch tensors.
|
485 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
486 |
+
If true, you get one large tensor as return.
|
487 |
+
Overwrites any setting from convert_to_numpy
|
488 |
+
device(`torch.device`, *optional*, defaults to None):
|
489 |
+
Which torch.device to use for the computation
|
490 |
+
normalize_embeddings(`bool`, *optional*, defaults to False):
|
491 |
+
If set to true, returned vectors will have length 1. In that case, the
|
492 |
+
faster dot-product (util.dot_score) instead of cosine similarity can
|
493 |
+
be used.
|
494 |
+
truncate_dim(`int`, *optional*, defaults to None):
|
495 |
+
The dimension to truncate sentence embeddings to. `None` does no truncation.
|
496 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
497 |
+
Keyword arguments for the tokenizer
|
498 |
+
Returns:
|
499 |
+
By default, a list of tensors is returned.
|
500 |
+
If convert_to_tensor, a stacked tensor is returned.
|
501 |
+
If convert_to_numpy, a numpy matrix is returned.
|
502 |
+
"""
|
503 |
+
is_training = self.training
|
504 |
+
self.eval()
|
505 |
+
|
506 |
+
if show_progress_bar is None:
|
507 |
+
show_progress_bar = (
|
508 |
+
logger.getEffectiveLevel() == logging.INFO
|
509 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
510 |
+
)
|
511 |
+
|
512 |
+
if convert_to_tensor:
|
513 |
+
convert_to_numpy = False
|
514 |
+
|
515 |
+
if output_value != "sentence_embedding":
|
516 |
+
convert_to_tensor = False
|
517 |
+
convert_to_numpy = False
|
518 |
+
|
519 |
+
input_was_string = False
|
520 |
+
if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
|
521 |
+
sentences = [sentences]
|
522 |
+
input_was_string = True
|
523 |
+
|
524 |
+
if device is not None:
|
525 |
+
self.to(device)
|
526 |
+
|
527 |
+
permutation = np.argsort([-len(i) for i in sentences])
|
528 |
+
inverse_permutation = np.argsort(permutation)
|
529 |
+
sentences = [sentences[idx] for idx in permutation]
|
530 |
+
|
531 |
+
tokenizer_kwargs["padding"] = tokenizer_kwargs.get("padding", True)
|
532 |
+
tokenizer_kwargs["max_length"] = tokenizer_kwargs.get(
|
533 |
+
"max_length", self.tokenizer.init_kwargs.get("model_max_length", 8192)
|
534 |
+
)
|
535 |
+
tokenizer_kwargs["truncation"] = tokenizer_kwargs.get("truncation", True)
|
536 |
+
|
537 |
+
all_embeddings = []
|
538 |
+
|
539 |
+
if trange is not None:
|
540 |
+
range_iter = trange(
|
541 |
+
0,
|
542 |
+
len(sentences),
|
543 |
+
batch_size,
|
544 |
+
desc="Encoding",
|
545 |
+
disable=not show_progress_bar,
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
range_iter = range(0, len(sentences), batch_size)
|
549 |
+
lora_arguments = (
|
550 |
+
{"adapter_mask": adapter_mask} if adapter_mask is not None else {}
|
551 |
+
)
|
552 |
+
for i in range_iter:
|
553 |
+
encoded_input = self.tokenizer(
|
554 |
+
sentences[i : i + batch_size],
|
555 |
+
return_tensors="pt",
|
556 |
+
**tokenizer_kwargs,
|
557 |
+
).to(self.device)
|
558 |
+
token_embs = self.forward(**encoded_input, **lora_arguments)[0]
|
559 |
+
|
560 |
+
# Accumulate in fp32 to avoid overflow
|
561 |
+
token_embs = token_embs.float()
|
562 |
+
|
563 |
+
if output_value == "token_embeddings":
|
564 |
+
raise NotImplementedError
|
565 |
+
elif output_value is None:
|
566 |
+
raise NotImplementedError
|
567 |
+
else:
|
568 |
+
if self.config.emb_pooler == "cls":
|
569 |
+
embeddings = self.cls_pooling(
|
570 |
+
token_embs, encoded_input["attention_mask"]
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
embeddings = self.mean_pooling(
|
574 |
+
token_embs, encoded_input["attention_mask"]
|
575 |
+
)
|
576 |
+
|
577 |
+
if normalize_embeddings:
|
578 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
579 |
+
|
580 |
+
if convert_to_numpy:
|
581 |
+
embeddings = embeddings.cpu()
|
582 |
+
all_embeddings.extend(embeddings)
|
583 |
+
|
584 |
+
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation]
|
585 |
+
|
586 |
+
truncate_dim = truncate_dim or self.config.truncate_dim
|
587 |
+
if truncate_dim:
|
588 |
+
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim)
|
589 |
+
|
590 |
+
if convert_to_tensor:
|
591 |
+
all_embeddings = torch.stack(all_embeddings)
|
592 |
+
elif convert_to_numpy:
|
593 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
594 |
+
|
595 |
+
if input_was_string:
|
596 |
+
all_embeddings = all_embeddings[0]
|
597 |
+
|
598 |
+
self.train(is_training)
|
599 |
+
return all_embeddings
|
600 |
+
|
601 |
+
def truncate_embeddings(self, embeddings, truncate_dim):
|
602 |
+
if not self.config.matryoshka_dimensions:
|
603 |
+
logger.warning(
|
604 |
+
"Matryoshka embeddings are not supported, so dimension truncation will not be performed."
|
605 |
+
)
|
606 |
+
return embeddings
|
607 |
+
elif truncate_dim in self.config.matryoshka_dimensions:
|
608 |
+
return [tensor[:truncate_dim] for tensor in embeddings]
|
609 |
+
else:
|
610 |
+
raise ValueError(
|
611 |
+
f"The provided `truncate_dim` value of {truncate_dim} is not supported. "
|
612 |
+
f"Supported dimensions are {self.config.matryoshka_dimensions}."
|
613 |
+
)
|
614 |
+
|
615 |
+
def mean_pooling(
|
616 |
+
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor
|
617 |
+
):
|
618 |
+
input_mask_expanded = (
|
619 |
+
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
620 |
+
)
|
621 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
|
622 |
+
input_mask_expanded.sum(1), min=1e-9
|
623 |
+
)
|
624 |
+
|
625 |
+
def cls_pooling(self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor):
|
626 |
+
return token_embeddings[:, 0]
|
627 |
+
|
628 |
+
@property
|
629 |
+
def rotary_emb_base(self):
|
630 |
+
return self._rotary_emb_base
|
631 |
+
|
632 |
+
@rotary_emb_base.setter
|
633 |
+
def rotary_emb_base(self, base):
|
634 |
+
if not isinstance(base, (int, float)):
|
635 |
+
raise TypeError("Base must be an integer or float")
|
636 |
+
logger.info(f"Changing RoPE base value to {base}")
|
637 |
+
for layer in self.encoder.layers:
|
638 |
+
layer.mixer.rotary_emb.base = base
|
639 |
+
self._rotary_emb_base = base
|
640 |
+
|
641 |
+
def forward(
|
642 |
+
self,
|
643 |
+
input_ids,
|
644 |
+
attention_mask,
|
645 |
+
task_id,
|
646 |
+
position_ids=None,
|
647 |
+
token_type_ids=None,
|
648 |
+
masked_tokens_mask=None,
|
649 |
+
return_dict=None,
|
650 |
+
**kwargs,
|
651 |
+
):
|
652 |
+
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
|
653 |
+
we only want the output for the masked tokens. This means that we only compute the last
|
654 |
+
layer output for these tokens.
|
655 |
+
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
656 |
+
"""
|
657 |
+
if kwargs:
|
658 |
+
for key, value in kwargs.items():
|
659 |
+
if value is not None:
|
660 |
+
logger.warning(
|
661 |
+
"Flash attention implementation does not support kwargs: %s",
|
662 |
+
key,
|
663 |
+
)
|
664 |
+
|
665 |
+
return_dict = (
|
666 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
667 |
+
)
|
668 |
+
|
669 |
+
hidden_states = self.embeddings(
|
670 |
+
input_ids,
|
671 |
+
position_ids=position_ids,
|
672 |
+
token_type_ids=token_type_ids,
|
673 |
+
task_id=task_id,
|
674 |
+
)
|
675 |
+
# TD [2022-12:18]: Don't need to force residual in fp32
|
676 |
+
# BERT puts embedding LayerNorm before embedding dropout.
|
677 |
+
if not self.fused_dropout_add_ln:
|
678 |
+
hidden_states = self.emb_ln(hidden_states)
|
679 |
+
else:
|
680 |
+
hidden_states = layer_norm_fn(
|
681 |
+
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
|
682 |
+
)
|
683 |
+
hidden_states = self.emb_drop(hidden_states)
|
684 |
+
|
685 |
+
if masked_tokens_mask is not None:
|
686 |
+
batch_size, seqlen = input_ids.shape[:2]
|
687 |
+
# We also need the first column for the CLS token
|
688 |
+
first_col_mask = torch.zeros(
|
689 |
+
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
|
690 |
+
)
|
691 |
+
first_col_mask[:, 0] = True
|
692 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
693 |
+
else:
|
694 |
+
subset_mask = None
|
695 |
+
|
696 |
+
sequence_output = self.encoder(
|
697 |
+
hidden_states,
|
698 |
+
key_padding_mask=attention_mask,
|
699 |
+
subset_mask=subset_mask,
|
700 |
+
task_id=task_id,
|
701 |
+
)
|
702 |
+
|
703 |
+
if masked_tokens_mask is None:
|
704 |
+
pooled_output = (
|
705 |
+
self.pooler(sequence_output, task_id=task_id)
|
706 |
+
if self.pooler is not None
|
707 |
+
else None
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
711 |
+
if attention_mask is not None:
|
712 |
+
subset_idx = subset_mask[attention_mask]
|
713 |
+
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
|
714 |
+
sequence_output = sequence_output[
|
715 |
+
masked_tokens_mask[attention_mask][subset_idx]
|
716 |
+
]
|
717 |
+
else:
|
718 |
+
pool_input = sequence_output[first_col_mask[subset_mask]]
|
719 |
+
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
720 |
+
pooled_output = (
|
721 |
+
self.pooler(pool_input, pool=False, task_id=task_id)
|
722 |
+
if self.pooler is not None
|
723 |
+
else None
|
724 |
+
)
|
725 |
+
|
726 |
+
if not return_dict:
|
727 |
+
return sequence_output, pooled_output
|
728 |
+
|
729 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
730 |
+
last_hidden_state=sequence_output,
|
731 |
+
pooler_output=pooled_output,
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel):
|
736 |
+
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
737 |
+
|
738 |
+
def __init__(self, config):
|
739 |
+
super().__init__(config)
|
740 |
+
|
741 |
+
if config.is_decoder:
|
742 |
+
logger.warning(
|
743 |
+
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
744 |
+
"bi-directional self-attention."
|
745 |
+
)
|
746 |
+
|
747 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
748 |
+
self.lm_head = XLMRobertaLMHead(config)
|
749 |
+
|
750 |
+
# Initialize weights and apply final processing
|
751 |
+
self.post_init()
|
752 |
+
|
753 |
+
def get_input_embeddings(self):
|
754 |
+
return self.roberta.embeddings.word_embeddings
|
755 |
+
|
756 |
+
def get_output_embeddings(self):
|
757 |
+
return self.lm_head.decoder
|
758 |
+
|
759 |
+
def set_output_embeddings(self, new_embeddings):
|
760 |
+
self.lm_head.decoder = new_embeddings
|
761 |
+
|
762 |
+
def forward(
|
763 |
+
self,
|
764 |
+
input_ids: Optional[torch.LongTensor] = None,
|
765 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
766 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
767 |
+
position_ids: Optional[torch.LongTensor] = None,
|
768 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
769 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
770 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
771 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
772 |
+
labels: Optional[torch.LongTensor] = None,
|
773 |
+
output_attentions: Optional[bool] = None,
|
774 |
+
output_hidden_states: Optional[bool] = None,
|
775 |
+
return_dict: Optional[bool] = None,
|
776 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
777 |
+
r"""
|
778 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
779 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
780 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
781 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
782 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
783 |
+
Used to hide legacy arguments that have been deprecated.
|
784 |
+
"""
|
785 |
+
return_dict = (
|
786 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
787 |
+
)
|
788 |
+
|
789 |
+
outputs = self.roberta(
|
790 |
+
input_ids,
|
791 |
+
attention_mask=attention_mask,
|
792 |
+
token_type_ids=token_type_ids,
|
793 |
+
position_ids=position_ids,
|
794 |
+
head_mask=head_mask,
|
795 |
+
inputs_embeds=inputs_embeds,
|
796 |
+
encoder_hidden_states=encoder_hidden_states,
|
797 |
+
encoder_attention_mask=encoder_attention_mask,
|
798 |
+
output_attentions=output_attentions,
|
799 |
+
output_hidden_states=output_hidden_states,
|
800 |
+
return_dict=return_dict,
|
801 |
+
)
|
802 |
+
sequence_output = outputs[0]
|
803 |
+
prediction_scores = self.lm_head(sequence_output)
|
804 |
+
|
805 |
+
masked_lm_loss = None
|
806 |
+
if labels is not None:
|
807 |
+
# move labels to correct device to enable model parallelism
|
808 |
+
labels = labels.to(prediction_scores.device)
|
809 |
+
loss_fct = CrossEntropyLoss()
|
810 |
+
masked_lm_loss = loss_fct(
|
811 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
812 |
+
)
|
813 |
+
|
814 |
+
if not return_dict:
|
815 |
+
output = (prediction_scores,) + outputs[2:]
|
816 |
+
return (
|
817 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
818 |
+
)
|
819 |
+
|
820 |
+
return MaskedLMOutput(
|
821 |
+
loss=masked_lm_loss,
|
822 |
+
logits=prediction_scores,
|
823 |
+
hidden_states=outputs.hidden_states,
|
824 |
+
attentions=outputs.attentions,
|
825 |
+
)
|
826 |
+
|
827 |
+
|
828 |
+
def remap_state_dict(state_dict, config: PretrainedConfig):
|
829 |
+
"""
|
830 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
831 |
+
"""
|
832 |
+
|
833 |
+
# LayerNorm
|
834 |
+
def key_mapping_ln_gamma_beta(key):
|
835 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
836 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
837 |
+
return key
|
838 |
+
|
839 |
+
state_dict = OrderedDict(
|
840 |
+
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()
|
841 |
+
)
|
842 |
+
|
843 |
+
# Layers
|
844 |
+
def key_mapping_layers(key):
|
845 |
+
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
|
846 |
+
|
847 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
848 |
+
|
849 |
+
# LayerNorm
|
850 |
+
def key_mapping_ln(key):
|
851 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
852 |
+
key = re.sub(
|
853 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
854 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
855 |
+
key,
|
856 |
+
)
|
857 |
+
key = re.sub(
|
858 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
859 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
860 |
+
key,
|
861 |
+
)
|
862 |
+
key = re.sub(
|
863 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
864 |
+
r"cls.predictions.transform.layer_norm.\1",
|
865 |
+
key,
|
866 |
+
)
|
867 |
+
return key
|
868 |
+
|
869 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
870 |
+
|
871 |
+
# MLP
|
872 |
+
def key_mapping_mlp(key):
|
873 |
+
key = re.sub(
|
874 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
875 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
876 |
+
key,
|
877 |
+
)
|
878 |
+
key = re.sub(
|
879 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
880 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
881 |
+
key,
|
882 |
+
)
|
883 |
+
return key
|
884 |
+
|
885 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
886 |
+
|
887 |
+
# Attention
|
888 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
889 |
+
for d in range(config.num_hidden_layers):
|
890 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
891 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
892 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
893 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
894 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
895 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
896 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
897 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
|
898 |
+
[Wq, Wk, Wv], dim=0
|
899 |
+
)
|
900 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat(
|
901 |
+
[bq, bk, bv], dim=0
|
902 |
+
)
|
903 |
+
else:
|
904 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
|
905 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat(
|
906 |
+
[Wk, Wv], dim=0
|
907 |
+
)
|
908 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
|
909 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat(
|
910 |
+
[bk, bv], dim=0
|
911 |
+
)
|
912 |
+
|
913 |
+
def key_mapping_attn(key):
|
914 |
+
return re.sub(
|
915 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
916 |
+
r"bert.encoder.layers.\1.mixer.out_proj.\2",
|
917 |
+
key,
|
918 |
+
)
|
919 |
+
|
920 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
921 |
+
|
922 |
+
def key_mapping_decoder_bias(key):
|
923 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
924 |
+
|
925 |
+
state_dict = OrderedDict(
|
926 |
+
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items()
|
927 |
+
)
|
928 |
+
|
929 |
+
# Word embedding
|
930 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
931 |
+
if pad_vocab_size_multiple > 1:
|
932 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
933 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
934 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
935 |
+
)
|
936 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
937 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
938 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
939 |
+
)
|
940 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
941 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
942 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
943 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
944 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
945 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
946 |
+
)
|
947 |
+
|
948 |
+
return state_dict
|
949 |
+
|
950 |
+
|
951 |
+
def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
952 |
+
"""
|
953 |
+
Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
|
954 |
+
|
955 |
+
This function is meant to be the inverse of remap_state_dict.
|
956 |
+
"""
|
957 |
+
# Word embedding
|
958 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
959 |
+
if pad_vocab_size_multiple > 1:
|
960 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
961 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
962 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
963 |
+
# unpad embeddings
|
964 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
|
965 |
+
: config.orig_vocab_size, :
|
966 |
+
]
|
967 |
+
state_dict["cls.predictions.decoder.weight"] = decoder_weight[
|
968 |
+
: config.orig_vocab_size, :
|
969 |
+
]
|
970 |
+
state_dict["cls.predictions.decoder.bias"] = decoder_bias[
|
971 |
+
: config.orig_vocab_size
|
972 |
+
]
|
973 |
+
|
974 |
+
for d in range(config.num_hidden_layers):
|
975 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
976 |
+
if not last_layer_subset or d != (config.num_hidden_layers - 1):
|
977 |
+
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
|
978 |
+
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
|
979 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = (
|
980 |
+
Wqkv_weights[: Wqkv_weights.shape[0] // 3, :]
|
981 |
+
)
|
982 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = (
|
983 |
+
Wqkv_weights[
|
984 |
+
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
|
985 |
+
]
|
986 |
+
)
|
987 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = (
|
988 |
+
Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :]
|
989 |
+
)
|
990 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = (
|
991 |
+
Wqkv_biases[: Wqkv_biases.shape[0] // 3]
|
992 |
+
)
|
993 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = (
|
994 |
+
Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3]
|
995 |
+
)
|
996 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = (
|
997 |
+
Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :]
|
998 |
+
)
|
999 |
+
else:
|
1000 |
+
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
|
1001 |
+
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
|
1002 |
+
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
|
1003 |
+
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
|
1004 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = (
|
1005 |
+
Wq_weight
|
1006 |
+
)
|
1007 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = (
|
1008 |
+
Wkv_weights[: Wkv_weights.shape[0] // 2, :]
|
1009 |
+
)
|
1010 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = (
|
1011 |
+
Wkv_weights[Wkv_weights.shape[0] // 2 :, :]
|
1012 |
+
)
|
1013 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
|
1014 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
|
1015 |
+
: Wkv_biases.shape[0] // 2
|
1016 |
+
]
|
1017 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = (
|
1018 |
+
Wkv_biases[Wkv_biases.shape[0] // 2 :]
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
def inv_key_mapping_ln(key):
|
1022 |
+
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
|
1023 |
+
key = re.sub(
|
1024 |
+
r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
|
1025 |
+
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
|
1026 |
+
key,
|
1027 |
+
)
|
1028 |
+
key = re.sub(
|
1029 |
+
r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
|
1030 |
+
r"bert.encoder.layers.\1.output.LayerNorm.\2",
|
1031 |
+
key,
|
1032 |
+
)
|
1033 |
+
key = re.sub(
|
1034 |
+
r"cls.predictions.transform.layer_norm.(weight|bias)",
|
1035 |
+
r"cls.predictions.transform.LayerNorm.\1",
|
1036 |
+
key,
|
1037 |
+
)
|
1038 |
+
return key
|
1039 |
+
|
1040 |
+
def inv_key_mapping_ln_gamma_beta(key):
|
1041 |
+
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
|
1042 |
+
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
|
1043 |
+
return key
|
1044 |
+
|
1045 |
+
def inv_key_mapping_layers(key):
|
1046 |
+
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
|
1047 |
+
|
1048 |
+
def inv_key_mapping_mlp(key):
|
1049 |
+
key = re.sub(
|
1050 |
+
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
|
1051 |
+
r"bert.encoder.layer.\1.intermediate.dense.\2",
|
1052 |
+
key,
|
1053 |
+
)
|
1054 |
+
key = re.sub(
|
1055 |
+
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
|
1056 |
+
r"bert.encoder.layer.\1.output.dense.\2",
|
1057 |
+
key,
|
1058 |
+
)
|
1059 |
+
return key
|
1060 |
+
|
1061 |
+
def inv_key_mapping_attn(key):
|
1062 |
+
return re.sub(
|
1063 |
+
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
|
1064 |
+
r"bert.encoder.layer.\1.attention.output.dense.\2",
|
1065 |
+
key,
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
def inv_key_mapping_decoder_bias(key):
|
1069 |
+
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
|
1070 |
+
|
1071 |
+
state_dict = OrderedDict(
|
1072 |
+
(inv_key_mapping_ln(key), value) for key, value in state_dict.items()
|
1073 |
+
)
|
1074 |
+
state_dict = OrderedDict(
|
1075 |
+
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
|
1076 |
+
)
|
1077 |
+
state_dict = OrderedDict(
|
1078 |
+
(inv_key_mapping_layers(key), value) for key, value in state_dict.items()
|
1079 |
+
)
|
1080 |
+
state_dict = OrderedDict(
|
1081 |
+
(inv_key_mapping_mlp(key), value) for key, value in state_dict.items()
|
1082 |
+
)
|
1083 |
+
state_dict = OrderedDict(
|
1084 |
+
(inv_key_mapping_attn(key), value) for key, value in state_dict.items()
|
1085 |
+
)
|
1086 |
+
state_dict = OrderedDict(
|
1087 |
+
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
return state_dict
|
1091 |
+
|
1092 |
+
|
1093 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
1094 |
+
class XLMRobertaClassificationHead(nn.Module):
|
1095 |
+
"""Head for sentence-level classification tasks."""
|
1096 |
+
|
1097 |
+
def __init__(self, config):
|
1098 |
+
super().__init__()
|
1099 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
1100 |
+
if fused_bias_fc and FusedDense is None:
|
1101 |
+
raise ImportError("fused_dense is not installed")
|
1102 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
1103 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
1104 |
+
classifier_dropout = (
|
1105 |
+
config.classifier_dropout
|
1106 |
+
if config.classifier_dropout is not None
|
1107 |
+
else config.hidden_dropout_prob
|
1108 |
+
)
|
1109 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1110 |
+
self.out_proj = linear_cls(config.hidden_size, config.num_labels)
|
1111 |
+
|
1112 |
+
def forward(self, features, **kwargs):
|
1113 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1114 |
+
x = self.dropout(x)
|
1115 |
+
x = self.dense(x)
|
1116 |
+
x = torch.tanh(x)
|
1117 |
+
x = self.dropout(x)
|
1118 |
+
x = self.out_proj(x)
|
1119 |
+
return x
|
1120 |
+
|
1121 |
+
|
1122 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
1123 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
1124 |
+
def __init__(self, config):
|
1125 |
+
super().__init__(config)
|
1126 |
+
self.num_labels = config.num_labels
|
1127 |
+
self.config = config
|
1128 |
+
|
1129 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
1130 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
1131 |
+
|
1132 |
+
# Initialize weights and apply final processing
|
1133 |
+
self.post_init()
|
1134 |
+
|
1135 |
+
def forward(
|
1136 |
+
self,
|
1137 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1138 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1139 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1140 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1141 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1142 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1143 |
+
labels: Optional[torch.LongTensor] = None,
|
1144 |
+
output_attentions: Optional[bool] = None,
|
1145 |
+
output_hidden_states: Optional[bool] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1148 |
+
r"""
|
1149 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1150 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1151 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1152 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1153 |
+
"""
|
1154 |
+
return_dict = (
|
1155 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
outputs = self.roberta(
|
1159 |
+
input_ids,
|
1160 |
+
attention_mask=attention_mask,
|
1161 |
+
token_type_ids=token_type_ids,
|
1162 |
+
position_ids=position_ids,
|
1163 |
+
head_mask=head_mask,
|
1164 |
+
inputs_embeds=inputs_embeds,
|
1165 |
+
output_attentions=output_attentions,
|
1166 |
+
output_hidden_states=output_hidden_states,
|
1167 |
+
return_dict=return_dict,
|
1168 |
+
)
|
1169 |
+
sequence_output = outputs[0]
|
1170 |
+
logits = self.classifier(sequence_output)
|
1171 |
+
|
1172 |
+
loss = None
|
1173 |
+
if labels is not None:
|
1174 |
+
# move labels to correct device to enable model parallelism
|
1175 |
+
labels = labels.to(logits.device)
|
1176 |
+
if self.config.problem_type is None:
|
1177 |
+
if self.num_labels == 1:
|
1178 |
+
self.config.problem_type = "regression"
|
1179 |
+
elif self.num_labels > 1 and (
|
1180 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1181 |
+
):
|
1182 |
+
self.config.problem_type = "single_label_classification"
|
1183 |
+
else:
|
1184 |
+
self.config.problem_type = "multi_label_classification"
|
1185 |
+
|
1186 |
+
if self.config.problem_type == "regression":
|
1187 |
+
loss_fct = MSELoss()
|
1188 |
+
if self.num_labels == 1:
|
1189 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1190 |
+
else:
|
1191 |
+
loss = loss_fct(logits, labels)
|
1192 |
+
elif self.config.problem_type == "single_label_classification":
|
1193 |
+
loss_fct = CrossEntropyLoss()
|
1194 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1195 |
+
elif self.config.problem_type == "multi_label_classification":
|
1196 |
+
loss_fct = BCEWithLogitsLoss()
|
1197 |
+
loss = loss_fct(logits, labels)
|
1198 |
+
|
1199 |
+
if not return_dict:
|
1200 |
+
output = (logits,) + outputs[2:]
|
1201 |
+
return ((loss,) + output) if loss is not None else output
|
1202 |
+
|
1203 |
+
return SequenceClassifierOutput(
|
1204 |
+
loss=loss,
|
1205 |
+
logits=logits,
|
1206 |
+
hidden_states=outputs.hidden_states,
|
1207 |
+
attentions=outputs.attentions,
|
1208 |
+
)
|
rotary.py
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py
|
2 |
+
# Commit id: 3566596ad867ee415dd3c12616dd50c610176f6c
|
3 |
+
# Rotary varlen support from https://github.com/Dao-AILab/flash-attention/pull/556
|
4 |
+
|
5 |
+
# Copyright (c) 2023, Tri Dao.
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
try:
|
14 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
15 |
+
except ImportError:
|
16 |
+
|
17 |
+
def apply_rotary(*args, **kwargs):
|
18 |
+
raise RuntimeError(
|
19 |
+
"FlashAttention is not installed. To proceed with training, please install FlashAttention. "
|
20 |
+
"For inference, you have two options: either install FlashAttention or disable it by setting use_flash_attn=False when loading the model."
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def rotate_half(x, interleaved=False):
|
25 |
+
if not interleaved:
|
26 |
+
x1, x2 = x.chunk(2, dim=-1)
|
27 |
+
return torch.cat((-x2, x1), dim=-1)
|
28 |
+
else:
|
29 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
30 |
+
return rearrange(
|
31 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
36 |
+
"""
|
37 |
+
x: (batch_size, seqlen, nheads, headdim)
|
38 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
39 |
+
"""
|
40 |
+
ro_dim = cos.shape[-1] * 2
|
41 |
+
assert ro_dim <= x.shape[-1]
|
42 |
+
cos, sin = (
|
43 |
+
cos[: x.shape[1]],
|
44 |
+
sin[: x.shape[1]],
|
45 |
+
)
|
46 |
+
cos = repeat(
|
47 |
+
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
48 |
+
)
|
49 |
+
sin = repeat(
|
50 |
+
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
51 |
+
)
|
52 |
+
return torch.cat(
|
53 |
+
[
|
54 |
+
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
55 |
+
x[..., ro_dim:],
|
56 |
+
],
|
57 |
+
dim=-1,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
62 |
+
@staticmethod
|
63 |
+
def forward(
|
64 |
+
ctx,
|
65 |
+
x,
|
66 |
+
cos,
|
67 |
+
sin,
|
68 |
+
interleaved=False,
|
69 |
+
inplace=False,
|
70 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
71 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
72 |
+
max_seqlen: Optional[int] = None,
|
73 |
+
):
|
74 |
+
out = apply_rotary(
|
75 |
+
x,
|
76 |
+
cos,
|
77 |
+
sin,
|
78 |
+
seqlen_offsets=seqlen_offsets,
|
79 |
+
cu_seqlens=cu_seqlens,
|
80 |
+
max_seqlen=max_seqlen,
|
81 |
+
interleaved=interleaved,
|
82 |
+
inplace=inplace,
|
83 |
+
)
|
84 |
+
|
85 |
+
if isinstance(seqlen_offsets, int):
|
86 |
+
ctx.save_for_backward(
|
87 |
+
cos, sin, cu_seqlens
|
88 |
+
) # Can't save int with save_for_backward
|
89 |
+
ctx.seqlen_offsets = seqlen_offsets
|
90 |
+
else:
|
91 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
92 |
+
ctx.seqlen_offsets = None
|
93 |
+
ctx.interleaved = interleaved
|
94 |
+
ctx.inplace = inplace
|
95 |
+
ctx.max_seqlen = max_seqlen
|
96 |
+
return out if not inplace else x
|
97 |
+
|
98 |
+
@staticmethod
|
99 |
+
def backward(ctx, do):
|
100 |
+
seqlen_offsets = ctx.seqlen_offsets
|
101 |
+
if seqlen_offsets is None:
|
102 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
103 |
+
else:
|
104 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
105 |
+
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
106 |
+
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
107 |
+
if not ctx.interleaved and not ctx.inplace:
|
108 |
+
do = do.clone()
|
109 |
+
|
110 |
+
dx = apply_rotary(
|
111 |
+
do,
|
112 |
+
cos,
|
113 |
+
sin,
|
114 |
+
seqlen_offsets=seqlen_offsets,
|
115 |
+
cu_seqlens=cu_seqlens,
|
116 |
+
max_seqlen=ctx.max_seqlen,
|
117 |
+
interleaved=ctx.interleaved,
|
118 |
+
inplace=ctx.inplace,
|
119 |
+
conjugate=True,
|
120 |
+
)
|
121 |
+
return dx, None, None, None, None, None, None, None
|
122 |
+
|
123 |
+
|
124 |
+
def apply_rotary_emb(
|
125 |
+
x,
|
126 |
+
cos,
|
127 |
+
sin,
|
128 |
+
interleaved=False,
|
129 |
+
inplace=False,
|
130 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
131 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
132 |
+
max_seqlen: Optional[int] = None,
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Arguments:
|
136 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
137 |
+
else (total_seqlen, nheads, headdim)
|
138 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
139 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
140 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
141 |
+
inplace: if True, apply rotary embedding in-place.
|
142 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
143 |
+
Most commonly used in inference when we have KV cache.
|
144 |
+
cu_seqlens: (batch + 1,) or None
|
145 |
+
max_seqlen: int
|
146 |
+
Return:
|
147 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
148 |
+
else (total_seqlen, nheads, headdim)
|
149 |
+
rotary_dim must be <= headdim
|
150 |
+
Apply rotary embedding to the first rotary_dim of x.
|
151 |
+
"""
|
152 |
+
return ApplyRotaryEmb.apply(
|
153 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
154 |
+
)
|
155 |
+
|
156 |
+
|
157 |
+
# For backward compatibility
|
158 |
+
apply_rotary_emb_func = apply_rotary_emb
|
159 |
+
|
160 |
+
|
161 |
+
class ApplyRotaryEmbQKV_(torch.nn.Module):
|
162 |
+
@staticmethod
|
163 |
+
def forward(
|
164 |
+
qkv,
|
165 |
+
cos,
|
166 |
+
sin,
|
167 |
+
cos_k=None,
|
168 |
+
sin_k=None,
|
169 |
+
interleaved=False,
|
170 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
171 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
172 |
+
max_seqlen: Optional[int] = None,
|
173 |
+
use_flash_attn: bool = True,
|
174 |
+
):
|
175 |
+
# batch, seqlen, three, nheads, headdim = qkv.shape
|
176 |
+
assert qkv.shape[-3] == 3
|
177 |
+
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
178 |
+
|
179 |
+
if use_flash_attn:
|
180 |
+
# Call 1 kernel instead of 2 kernels
|
181 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
182 |
+
# dimensions, we get the same tensor
|
183 |
+
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
184 |
+
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
|
185 |
+
apply_rotary(
|
186 |
+
qk,
|
187 |
+
cos,
|
188 |
+
sin,
|
189 |
+
seqlen_offsets=seqlen_offsets,
|
190 |
+
interleaved=interleaved,
|
191 |
+
inplace=True,
|
192 |
+
cu_seqlens=cu_seqlens,
|
193 |
+
max_seqlen=max_seqlen,
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
q_rot = apply_rotary_emb_torch(
|
197 |
+
qkv[:, :, 0],
|
198 |
+
cos,
|
199 |
+
sin,
|
200 |
+
interleaved=interleaved,
|
201 |
+
)
|
202 |
+
k_rot = apply_rotary_emb_torch(
|
203 |
+
qkv[:, :, 1],
|
204 |
+
cos,
|
205 |
+
sin,
|
206 |
+
interleaved=interleaved,
|
207 |
+
)
|
208 |
+
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
209 |
+
else:
|
210 |
+
cos_k = cos if cos_k is None else cos_k
|
211 |
+
sin_k = sin if sin_k is None else sin_k
|
212 |
+
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
|
213 |
+
apply_rotary(
|
214 |
+
q,
|
215 |
+
cos,
|
216 |
+
sin,
|
217 |
+
seqlen_offsets,
|
218 |
+
interleaved=interleaved,
|
219 |
+
inplace=True,
|
220 |
+
cu_seqlens=cu_seqlens,
|
221 |
+
max_seqlen=max_seqlen,
|
222 |
+
)
|
223 |
+
apply_rotary(
|
224 |
+
k,
|
225 |
+
cos_k,
|
226 |
+
sin_k,
|
227 |
+
seqlen_offsets,
|
228 |
+
interleaved=interleaved,
|
229 |
+
inplace=True,
|
230 |
+
cu_seqlens=cu_seqlens,
|
231 |
+
max_seqlen=max_seqlen,
|
232 |
+
)
|
233 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k)
|
234 |
+
# if isinstance(seqlen_offsets, int):
|
235 |
+
# ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens)
|
236 |
+
# ctx.seqlen_offsets = seqlen_offsets
|
237 |
+
# else:
|
238 |
+
# ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets)
|
239 |
+
# ctx.seqlen_offsets = None
|
240 |
+
# ctx.max_seqlen = max_seqlen
|
241 |
+
# ctx.interleaved = interleaved
|
242 |
+
return qkv
|
243 |
+
|
244 |
+
# @staticmethod
|
245 |
+
# def backward(ctx, dqkv):
|
246 |
+
# seqlen_offsets = ctx.seqlen_offsets
|
247 |
+
# if seqlen_offsets is None:
|
248 |
+
# cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
249 |
+
# else:
|
250 |
+
# cos, sin, cos_k, sin_k, cu_seqlens = ctx.saved_tensors
|
251 |
+
# if cos_k is None and sin_k is None and dqkv.is_contiguous():
|
252 |
+
# # Call 1 kernel instead of 2 kernels
|
253 |
+
# # We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
|
254 |
+
# # dimensions, we get the same tensor
|
255 |
+
# dqk = rearrange(dqkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
256 |
+
# apply_rotary(
|
257 |
+
# dqk,
|
258 |
+
# cos,
|
259 |
+
# sin,
|
260 |
+
# seqlen_offsets=seqlen_offsets,
|
261 |
+
# interleaved=ctx.interleaved,
|
262 |
+
# inplace=True,
|
263 |
+
# conjugate=True,
|
264 |
+
# cu_seqlens=cu_seqlens,
|
265 |
+
# max_seqlen=ctx.max_seqlen,
|
266 |
+
# )
|
267 |
+
# else:
|
268 |
+
# cos_k = cos if cos_k is None else cos_k
|
269 |
+
# sin_k = sin if sin_k is None else sin_k
|
270 |
+
# dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
|
271 |
+
# apply_rotary(
|
272 |
+
# dq,
|
273 |
+
# cos,
|
274 |
+
# sin,
|
275 |
+
# seqlen_offsets,
|
276 |
+
# interleaved=ctx.interleaved,
|
277 |
+
# inplace=True,
|
278 |
+
# conjugate=True,
|
279 |
+
# cu_seqlens=cu_seqlens,
|
280 |
+
# max_seqlen=ctx.max_seqlen,
|
281 |
+
# )
|
282 |
+
# apply_rotary(
|
283 |
+
# dk,
|
284 |
+
# cos_k,
|
285 |
+
# sin_k,
|
286 |
+
# seqlen_offsets,
|
287 |
+
# interleaved=ctx.interleaved,
|
288 |
+
# inplace=True,
|
289 |
+
# conjugate=True,
|
290 |
+
# cu_seqlens=cu_seqlens,
|
291 |
+
# max_seqlen=ctx.max_seqlen,
|
292 |
+
# )
|
293 |
+
# return dqkv, None, None, None, None, None, None, None, None, None
|
294 |
+
|
295 |
+
|
296 |
+
def apply_rotary_emb_qkv_(
|
297 |
+
qkv,
|
298 |
+
cos,
|
299 |
+
sin,
|
300 |
+
cos_k=None,
|
301 |
+
sin_k=None,
|
302 |
+
interleaved=False,
|
303 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
304 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
305 |
+
max_seqlen: Optional[int] = None,
|
306 |
+
use_flash_attn=True,
|
307 |
+
):
|
308 |
+
"""
|
309 |
+
Arguments:
|
310 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
311 |
+
else (total_seqlen, 3, nheads, headdim)
|
312 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
313 |
+
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
|
314 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
315 |
+
1st half and 2nd half (GPT-NeoX style).
|
316 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
317 |
+
Most commonly used in inference when we have KV cache.
|
318 |
+
cu_seqlens: (batch + 1,) or None
|
319 |
+
max_seqlen: int
|
320 |
+
Return:
|
321 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
322 |
+
else (total_seqlen, 3, nheads, headdim)
|
323 |
+
rotary_dim must be <= headdim
|
324 |
+
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
325 |
+
"""
|
326 |
+
return ApplyRotaryEmbQKV_.forward(
|
327 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen, use_flash_attn,
|
328 |
+
)
|
329 |
+
|
330 |
+
|
331 |
+
class ApplyRotaryEmbKV_(torch.autograd.Function):
|
332 |
+
@staticmethod
|
333 |
+
def forward(
|
334 |
+
ctx,
|
335 |
+
kv,
|
336 |
+
cos,
|
337 |
+
sin,
|
338 |
+
interleaved=False,
|
339 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
340 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
341 |
+
max_seqlen: Optional[int] = None,
|
342 |
+
):
|
343 |
+
# batch, seqlen, two, nheads, headdim = kv.shape
|
344 |
+
assert kv.shape[-3] == 2
|
345 |
+
k = kv[..., 0, :, :]
|
346 |
+
apply_rotary(
|
347 |
+
k,
|
348 |
+
cos,
|
349 |
+
sin,
|
350 |
+
seqlen_offsets=seqlen_offsets,
|
351 |
+
interleaved=interleaved,
|
352 |
+
inplace=True,
|
353 |
+
cu_seqlens=cu_seqlens,
|
354 |
+
max_seqlen=max_seqlen,
|
355 |
+
)
|
356 |
+
if isinstance(seqlen_offsets, int):
|
357 |
+
ctx.save_for_backward(
|
358 |
+
cos, sin, cu_seqlens
|
359 |
+
) # Can't save int with save_for_backward
|
360 |
+
ctx.seqlen_offsets = seqlen_offsets
|
361 |
+
else:
|
362 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
363 |
+
ctx.seqlen_offsets = None
|
364 |
+
ctx.max_seqlen = max_seqlen
|
365 |
+
ctx.interleaved = interleaved
|
366 |
+
return kv
|
367 |
+
|
368 |
+
@staticmethod
|
369 |
+
def backward(ctx, dkv):
|
370 |
+
seqlen_offsets = ctx.seqlen_offsets
|
371 |
+
if seqlen_offsets is None:
|
372 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
373 |
+
else:
|
374 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
375 |
+
apply_rotary(
|
376 |
+
dkv[..., 0, :, :],
|
377 |
+
cos,
|
378 |
+
sin,
|
379 |
+
seqlen_offsets=seqlen_offsets,
|
380 |
+
interleaved=ctx.interleaved,
|
381 |
+
inplace=True,
|
382 |
+
conjugate=True,
|
383 |
+
cu_seqlens=cu_seqlens,
|
384 |
+
max_seqlen=ctx.max_seqlen,
|
385 |
+
)
|
386 |
+
return dkv, None, None, None, None, None, None
|
387 |
+
|
388 |
+
|
389 |
+
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
|
390 |
+
|
391 |
+
|
392 |
+
def apply_rotary_emb_kv_(
|
393 |
+
kv,
|
394 |
+
cos,
|
395 |
+
sin,
|
396 |
+
interleaved=False,
|
397 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
398 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
399 |
+
max_seqlen: Optional[int] = None,
|
400 |
+
):
|
401 |
+
"""
|
402 |
+
Arguments:
|
403 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
404 |
+
else (total_seqlen, 2, nheads, headdim)
|
405 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
406 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
407 |
+
1st half and 2nd half (GPT-NeoX style).
|
408 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
409 |
+
Most commonly used in inference when we have KV cache.
|
410 |
+
cu_seqlens: (batch + 1,) or None
|
411 |
+
max_seqlen: int
|
412 |
+
Return:
|
413 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
414 |
+
else (total_seqlen, 2, nheads, headdim)
|
415 |
+
rotary_dim must be <= headdim
|
416 |
+
Apply rotary embedding *inplace* to the first rotary_dim of K.
|
417 |
+
"""
|
418 |
+
return ApplyRotaryEmbKV_.apply(
|
419 |
+
kv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
420 |
+
)
|
421 |
+
|
422 |
+
|
423 |
+
class RotaryEmbedding(torch.nn.Module):
|
424 |
+
"""
|
425 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
426 |
+
A crucial insight from the method is that the query and keys are
|
427 |
+
transformed by rotation matrices which depend on the relative positions.
|
428 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
429 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
430 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
431 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
432 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
433 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
434 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
435 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
436 |
+
"""
|
437 |
+
|
438 |
+
def __init__(
|
439 |
+
self,
|
440 |
+
dim: int,
|
441 |
+
base=10000.0,
|
442 |
+
interleaved=False,
|
443 |
+
scale_base=None,
|
444 |
+
pos_idx_in_fp32=True,
|
445 |
+
device=None,
|
446 |
+
use_flash_attn=True,
|
447 |
+
):
|
448 |
+
"""
|
449 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
450 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
451 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
452 |
+
otherwise they might be in lower precision.
|
453 |
+
This option was added because previously (before 2023-07-02), when we construct
|
454 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
455 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
456 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
457 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
458 |
+
embeddings for some positions will coincide.
|
459 |
+
To maintain compatibility with models previously trained in pure bf16,
|
460 |
+
we add this option.
|
461 |
+
"""
|
462 |
+
super().__init__()
|
463 |
+
self.dim = dim
|
464 |
+
self._base = float(base)
|
465 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
466 |
+
self.use_flash_attn = use_flash_attn
|
467 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
468 |
+
inv_freq = self._compute_inv_freq(device)
|
469 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
470 |
+
self.interleaved = interleaved
|
471 |
+
self.scale_base = scale_base
|
472 |
+
scale = (
|
473 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
474 |
+
/ (1.4 * dim)
|
475 |
+
if scale_base is not None
|
476 |
+
else None
|
477 |
+
)
|
478 |
+
self.register_buffer("scale", scale, persistent=False)
|
479 |
+
|
480 |
+
self._seq_len_cached = 8194
|
481 |
+
self._cos_cached = None
|
482 |
+
self._sin_cached = None
|
483 |
+
# self._cos_k_cached = None
|
484 |
+
# self._sin_k_cached = None
|
485 |
+
self._update_cos_sin_cache(seqlen=self._seq_len_cached, device=device)
|
486 |
+
|
487 |
+
|
488 |
+
@property
|
489 |
+
def base(self):
|
490 |
+
return self._base
|
491 |
+
|
492 |
+
@base.setter
|
493 |
+
def base(self, new_base):
|
494 |
+
new_base = float(new_base)
|
495 |
+
if new_base > 0:
|
496 |
+
if self._base != new_base: # only update if the base value has changed
|
497 |
+
self._base = new_base
|
498 |
+
self._update_cos_sin_cache(
|
499 |
+
self._seq_len_cached,
|
500 |
+
device=self.inv_freq.device,
|
501 |
+
dtype=self._cos_cached.dtype if self._cos_cached is not None else None,
|
502 |
+
rotary_base_changed=True,
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
raise ValueError("Rotary base value must be positive")
|
506 |
+
|
507 |
+
def _compute_inv_freq(self, device=None):
|
508 |
+
return 1.0 / (
|
509 |
+
self.base
|
510 |
+
** (
|
511 |
+
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
512 |
+
/ self.dim
|
513 |
+
)
|
514 |
+
)
|
515 |
+
|
516 |
+
def _update_cos_sin_cache(
|
517 |
+
self, seqlen, device=None, dtype=None, rotary_base_changed=False
|
518 |
+
):
|
519 |
+
# Reset the tables if the sequence length has changed,
|
520 |
+
# if we're on a new device (possibly due to tracing for instance),
|
521 |
+
# or if we're switching from inference mode to training
|
522 |
+
# or if the rotary base value was changed
|
523 |
+
if (
|
524 |
+
seqlen > self._seq_len_cached
|
525 |
+
or self._cos_cached is None
|
526 |
+
or self._cos_cached.device != device
|
527 |
+
or self._cos_cached.dtype != dtype
|
528 |
+
or (self.training and self._cos_cached.is_inference())
|
529 |
+
or rotary_base_changed
|
530 |
+
):
|
531 |
+
if seqlen != self._seq_len_cached:
|
532 |
+
self._seq_len_cached = seqlen
|
533 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
534 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
535 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
536 |
+
if rotary_base_changed:
|
537 |
+
self.inv_freq = self._compute_inv_freq(device=device)
|
538 |
+
if self.pos_idx_in_fp32:
|
539 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
540 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
541 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
542 |
+
# cos & sin output to change significantly.
|
543 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
544 |
+
if self.inv_freq.dtype != torch.float32:
|
545 |
+
inv_freq = self._compute_inv_freq(device=device)
|
546 |
+
else:
|
547 |
+
inv_freq = self.inv_freq
|
548 |
+
else:
|
549 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
550 |
+
inv_freq = self.inv_freq
|
551 |
+
|
552 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
553 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
554 |
+
freqs = torch.outer(t, inv_freq)
|
555 |
+
if self.scale is None:
|
556 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
557 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
558 |
+
else:
|
559 |
+
power = (
|
560 |
+
torch.arange(
|
561 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
562 |
+
)
|
563 |
+
- seqlen // 2
|
564 |
+
) / self.scale_base
|
565 |
+
scale = self.scale.to(device=power.device) ** rearrange(
|
566 |
+
power, "s -> s 1"
|
567 |
+
)
|
568 |
+
# We want the multiplication by scale to happen in fp32
|
569 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
570 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
571 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
572 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
573 |
+
|
574 |
+
def forward(
|
575 |
+
self,
|
576 |
+
qkv: torch.Tensor,
|
577 |
+
kv: Optional[torch.Tensor] = None,
|
578 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
579 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
580 |
+
max_seqlen: Optional[int] = None,
|
581 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
582 |
+
"""
|
583 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
584 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
585 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
586 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
587 |
+
Most commonly used in inference when we have KV cache.
|
588 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
589 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
590 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
591 |
+
"""
|
592 |
+
if cu_seqlens is not None:
|
593 |
+
assert max_seqlen is not None
|
594 |
+
seqlen = qkv.shape[1] if max_seqlen is None else max_seqlen
|
595 |
+
# if max_seqlen is not None:
|
596 |
+
# self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
597 |
+
# elif isinstance(seqlen_offset, int):
|
598 |
+
# self._update_cos_sin_cache(
|
599 |
+
# seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype
|
600 |
+
# )
|
601 |
+
if kv is None:
|
602 |
+
if self.scale is None:
|
603 |
+
return apply_rotary_emb_qkv_(
|
604 |
+
qkv,
|
605 |
+
self._cos_cached,
|
606 |
+
self._sin_cached,
|
607 |
+
interleaved=self.interleaved,
|
608 |
+
seqlen_offsets=seqlen_offset,
|
609 |
+
cu_seqlens=cu_seqlens,
|
610 |
+
max_seqlen=max_seqlen,
|
611 |
+
use_flash_attn=self.use_flash_attn,
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
return apply_rotary_emb_qkv_(
|
615 |
+
qkv,
|
616 |
+
self._cos_cached,
|
617 |
+
self._sin_cached,
|
618 |
+
self._cos_k_cached,
|
619 |
+
self._sin_k_cached,
|
620 |
+
interleaved=self.interleaved,
|
621 |
+
seqlen_offsets=seqlen_offset,
|
622 |
+
cu_seqlens=cu_seqlens,
|
623 |
+
max_seqlen=max_seqlen,
|
624 |
+
use_flash_attn=self.use_flash_attn,
|
625 |
+
)
|
626 |
+
else:
|
627 |
+
q = qkv
|
628 |
+
q = apply_rotary_emb_func(
|
629 |
+
q,
|
630 |
+
self._cos_cached,
|
631 |
+
self._sin_cached,
|
632 |
+
interleaved=self.interleaved,
|
633 |
+
inplace=True,
|
634 |
+
seqlen_offsets=seqlen_offset,
|
635 |
+
cu_seqlens=cu_seqlens,
|
636 |
+
max_seqlen=max_seqlen,
|
637 |
+
)
|
638 |
+
if self.scale is None:
|
639 |
+
kv = apply_rotary_emb_kv_(
|
640 |
+
kv,
|
641 |
+
self._cos_cached,
|
642 |
+
self._sin_cached,
|
643 |
+
interleaved=self.interleaved,
|
644 |
+
seqlen_offsets=seqlen_offset,
|
645 |
+
cu_seqlens=cu_seqlens,
|
646 |
+
max_seqlen=max_seqlen,
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
kv = apply_rotary_emb_kv_(
|
650 |
+
kv,
|
651 |
+
self._cos_k_cached,
|
652 |
+
self._sin_k_cached,
|
653 |
+
interleaved=self.interleaved,
|
654 |
+
seqlen_offsets=seqlen_offset,
|
655 |
+
cu_seqlens=cu_seqlens,
|
656 |
+
max_seqlen=max_seqlen,
|
657 |
+
)
|
658 |
+
return q, kv
|
stochastic_depth.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation modified from torchvision:
|
2 |
+
# https://github.com/pytorch/vision/blob/main/torchvision/ops/stochastic_depth.py
|
3 |
+
#
|
4 |
+
# License:
|
5 |
+
# BSD 3-Clause License
|
6 |
+
#
|
7 |
+
# Copyright (c) Soumith Chintala 2016,
|
8 |
+
# All rights reserved.
|
9 |
+
#
|
10 |
+
# Redistribution and use in source and binary forms, with or without
|
11 |
+
# modification, are permitted provided that the following conditions are met:
|
12 |
+
#
|
13 |
+
# * Redistributions of source code must retain the above copyright notice, this
|
14 |
+
# list of conditions and the following disclaimer.
|
15 |
+
#
|
16 |
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
17 |
+
# this list of conditions and the following disclaimer in the documentation
|
18 |
+
# and/or other materials provided with the distribution.
|
19 |
+
#
|
20 |
+
# * Neither the name of the copyright holder nor the names of its
|
21 |
+
# contributors may be used to endorse or promote products derived from
|
22 |
+
# this software without specific prior written permission.
|
23 |
+
#
|
24 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
25 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
26 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
27 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
28 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
29 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
30 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
31 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
32 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
33 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34 |
+
|
35 |
+
import torch
|
36 |
+
import torch.fx
|
37 |
+
from torch import Tensor, nn
|
38 |
+
|
39 |
+
|
40 |
+
def stochastic_depth(
|
41 |
+
input: Tensor, p: float, mode: str, training: bool = True
|
42 |
+
) -> Tensor:
|
43 |
+
"""
|
44 |
+
Implements the Stochastic Depth from `"Deep Networks with Stochastic Depth"
|
45 |
+
<https://arxiv.org/abs/1603.09382>`_ used for randomly dropping residual
|
46 |
+
branches of residual architectures.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
input (Tensor[N, ...]): The input tensor or arbitrary dimensions with the first one
|
50 |
+
being its batch i.e. a batch with ``N`` rows.
|
51 |
+
p (float): probability of the input to be zeroed.
|
52 |
+
mode (str): ``"batch"`` or ``"row"``.
|
53 |
+
``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes
|
54 |
+
randomly selected rows from the batch.
|
55 |
+
training: apply stochastic depth if is ``True``. Default: ``True``
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
Tensor[N, ...]: The randomly zeroed tensor.
|
59 |
+
"""
|
60 |
+
if p < 0.0 or p > 1.0:
|
61 |
+
raise ValueError(f"drop probability has to be between 0 and 1, but got {p}")
|
62 |
+
if mode not in ["batch", "row"]:
|
63 |
+
raise ValueError(f"mode has to be either 'batch' or 'row', but got {mode}")
|
64 |
+
if not training or p == 0.0:
|
65 |
+
return input
|
66 |
+
|
67 |
+
survival_rate = 1.0 - p
|
68 |
+
if mode == "row":
|
69 |
+
size = [input.shape[0]] + [1] * (input.ndim - 1)
|
70 |
+
else:
|
71 |
+
size = [1] * input.ndim
|
72 |
+
noise = torch.empty(size, dtype=input.dtype, device=input.device)
|
73 |
+
noise = noise.bernoulli_(survival_rate)
|
74 |
+
if survival_rate > 0.0:
|
75 |
+
noise.div_(survival_rate)
|
76 |
+
return input * noise
|
77 |
+
|
78 |
+
|
79 |
+
torch.fx.wrap("stochastic_depth")
|
80 |
+
|
81 |
+
|
82 |
+
class StochasticDepth(nn.Module):
|
83 |
+
"""
|
84 |
+
See :func:`stochastic_depth`.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, p: float, mode: str) -> None:
|
88 |
+
super().__init__()
|
89 |
+
self.p = p
|
90 |
+
self.mode = mode
|
91 |
+
|
92 |
+
def forward(self, input: Tensor) -> Tensor:
|
93 |
+
return stochastic_depth(input, self.p, self.mode, self.training)
|
94 |
+
|
95 |
+
def __repr__(self) -> str:
|
96 |
+
s = f"{self.__class__.__name__}(p={self.p}, mode={self.mode})"
|
97 |
+
return s
|
xlm_padding.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
|
2 |
+
# Commit id: c94cd09744d20f0ac587a351ff6ff2e8ad11ae1b
|
3 |
+
|
4 |
+
# Previously adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
|
10 |
+
|
11 |
+
class IndexFirstAxis(torch.autograd.Function):
|
12 |
+
@staticmethod
|
13 |
+
def forward(ctx, input, indices):
|
14 |
+
ctx.save_for_backward(indices)
|
15 |
+
assert input.ndim >= 2
|
16 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
17 |
+
second_dim = other_shape.numel()
|
18 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
19 |
+
# return input[indices]
|
20 |
+
return torch.gather(
|
21 |
+
rearrange(input, "b ... -> b (...)"),
|
22 |
+
0,
|
23 |
+
repeat(indices, "z -> z d", d=second_dim),
|
24 |
+
).reshape(-1, *other_shape)
|
25 |
+
|
26 |
+
@staticmethod
|
27 |
+
def backward(ctx, grad_output):
|
28 |
+
(indices,) = ctx.saved_tensors
|
29 |
+
assert grad_output.ndim >= 2
|
30 |
+
other_shape = grad_output.shape[1:]
|
31 |
+
grad_output = rearrange(grad_output, "b ... -> b (...)")
|
32 |
+
grad_input = torch.zeros(
|
33 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
34 |
+
device=grad_output.device,
|
35 |
+
dtype=grad_output.dtype,
|
36 |
+
)
|
37 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
38 |
+
# grad_input[indices] = grad_output
|
39 |
+
grad_input.scatter_(
|
40 |
+
0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output
|
41 |
+
)
|
42 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
43 |
+
|
44 |
+
|
45 |
+
index_first_axis = IndexFirstAxis.apply
|
46 |
+
|
47 |
+
|
48 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
49 |
+
@staticmethod
|
50 |
+
def forward(ctx, values, indices, first_axis_dim):
|
51 |
+
ctx.save_for_backward(indices)
|
52 |
+
assert indices.ndim == 1
|
53 |
+
assert values.ndim >= 2
|
54 |
+
output = torch.zeros(
|
55 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
56 |
+
)
|
57 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
58 |
+
output[indices] = values
|
59 |
+
# output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
|
60 |
+
return output
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def backward(ctx, grad_output):
|
64 |
+
(indices,) = ctx.saved_tensors
|
65 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
66 |
+
grad_values = grad_output[indices]
|
67 |
+
# grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
|
68 |
+
return grad_values, None, None
|
69 |
+
|
70 |
+
|
71 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
72 |
+
|
73 |
+
|
74 |
+
class IndexFirstAxisResidual(torch.autograd.Function):
|
75 |
+
@staticmethod
|
76 |
+
def forward(ctx, input, indices):
|
77 |
+
ctx.save_for_backward(indices)
|
78 |
+
assert input.ndim >= 2
|
79 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
80 |
+
second_dim = other_shape.numel()
|
81 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
82 |
+
output = input[indices]
|
83 |
+
# We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
|
84 |
+
# memory format to channel_first. In other words, input might not be contiguous.
|
85 |
+
# If we don't detach, Pytorch complains about output being a view and is being modified inplace
|
86 |
+
return output, input.detach()
|
87 |
+
|
88 |
+
@staticmethod
|
89 |
+
def backward(ctx, grad_output, grad_residual):
|
90 |
+
(indices,) = ctx.saved_tensors
|
91 |
+
assert grad_output.ndim >= 2
|
92 |
+
other_shape = grad_output.shape[1:]
|
93 |
+
assert grad_residual.shape[1:] == other_shape
|
94 |
+
grad_input = grad_residual
|
95 |
+
# grad_input[indices] += grad_output
|
96 |
+
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
|
97 |
+
indices = indices.expand_as(grad_output)
|
98 |
+
grad_input.scatter_add_(0, indices, grad_output)
|
99 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
100 |
+
|
101 |
+
|
102 |
+
index_first_axis_residual = IndexFirstAxisResidual.apply
|
103 |
+
|
104 |
+
|
105 |
+
def unpad_input(hidden_states, attention_mask):
|
106 |
+
"""
|
107 |
+
Arguments:
|
108 |
+
hidden_states: (batch, seqlen, ...)
|
109 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
110 |
+
Return:
|
111 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
112 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
113 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
114 |
+
max_seqlen_in_batch: int
|
115 |
+
"""
|
116 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
117 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
118 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
119 |
+
cu_seqlens = F.pad(
|
120 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
121 |
+
)
|
122 |
+
|
123 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
124 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
125 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
126 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
127 |
+
# so we write custom forward and backward to make it a bit faster.
|
128 |
+
return (
|
129 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
130 |
+
indices,
|
131 |
+
cu_seqlens,
|
132 |
+
max_seqlen_in_batch,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
|
137 |
+
"""
|
138 |
+
Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
|
139 |
+
The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
|
140 |
+
|
141 |
+
For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
|
142 |
+
```
|
143 |
+
[
|
144 |
+
[2, 3, 0, 0, 0, 0],
|
145 |
+
[3, 2, 0, 0, 0, 0],
|
146 |
+
[6, 0, 0, 0, 0, 0]
|
147 |
+
]
|
148 |
+
```
|
149 |
+
, which refers to the 3D-attention mask:
|
150 |
+
```
|
151 |
+
[
|
152 |
+
[
|
153 |
+
[1, 0, 0, 0, 0, 0],
|
154 |
+
[1, 1, 0, 0, 0, 0],
|
155 |
+
[0, 0, 1, 0, 0, 0],
|
156 |
+
[0, 0, 1, 1, 0, 0],
|
157 |
+
[0, 0, 1, 1, 1, 0],
|
158 |
+
[0, 0, 0, 0, 0, 1]
|
159 |
+
],
|
160 |
+
[
|
161 |
+
[1, 0, 0, 0, 0, 0],
|
162 |
+
[1, 1, 0, 0, 0, 0],
|
163 |
+
[1, 1, 1, 0, 0, 0],
|
164 |
+
[0, 0, 0, 1, 0, 0],
|
165 |
+
[0, 0, 0, 1, 1, 0],
|
166 |
+
[0, 0, 0, 0, 0, 1]
|
167 |
+
],
|
168 |
+
[
|
169 |
+
[1, 0, 0, 0, 0, 0],
|
170 |
+
[1, 1, 0, 0, 0, 0],
|
171 |
+
[1, 1, 1, 0, 0, 0],
|
172 |
+
[1, 1, 1, 1, 0, 0],
|
173 |
+
[1, 1, 1, 1, 1, 0],
|
174 |
+
[1, 1, 1, 1, 1, 1]
|
175 |
+
]
|
176 |
+
]
|
177 |
+
```.
|
178 |
+
|
179 |
+
Arguments:
|
180 |
+
hidden_states: (batch, seqlen, ...)
|
181 |
+
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
|
182 |
+
Return:
|
183 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
184 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
185 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
186 |
+
max_seqlen_in_batch: int
|
187 |
+
"""
|
188 |
+
length = attention_mask_in_length.sum(dim=-1)
|
189 |
+
seqlen = attention_mask_in_length.size(-1)
|
190 |
+
attention_mask_2d = torch.arange(
|
191 |
+
seqlen, device=length.device, dtype=length.dtype
|
192 |
+
).expand(len(length), seqlen) < length.unsqueeze(1)
|
193 |
+
real_indices_idx = torch.nonzero(
|
194 |
+
attention_mask_in_length.flatten(), as_tuple=False
|
195 |
+
).flatten()
|
196 |
+
seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
|
197 |
+
indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
|
198 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
199 |
+
cu_seqlens = F.pad(
|
200 |
+
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
201 |
+
)
|
202 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
203 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
204 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
205 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
206 |
+
# so we write custom forward and backward to make it a bit faster.
|
207 |
+
return (
|
208 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
209 |
+
indices,
|
210 |
+
cu_seqlens,
|
211 |
+
max_seqlen_in_batch,
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
def pad_input(hidden_states, indices, batch, seqlen):
|
216 |
+
"""
|
217 |
+
Arguments:
|
218 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
219 |
+
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
|
220 |
+
batch: int, batch size for the padded sequence.
|
221 |
+
seqlen: int, maximum sequence length for the padded sequence.
|
222 |
+
Return:
|
223 |
+
hidden_states: (batch, seqlen, ...)
|
224 |
+
"""
|
225 |
+
dim = hidden_states.shape[-1]
|
226 |
+
# output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
|
227 |
+
# output[indices] = hidden_states
|
228 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
229 |
+
return rearrange(output, "(b s) ... -> b s ...", b=batch)
|