File size: 38,142 Bytes
2e3ebcb 1c61b96 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 1c61b96 2e3ebcb 1c61b96 2e3ebcb 1c61b96 2e3ebcb 1c61b96 2e3ebcb 1c61b96 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb 95b4916 2e3ebcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
import logging
import re
from collections import OrderedDict
from collections.abc import Sequence
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from transformers import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
from transformers.models.bert.modeling_bert import (
BaseModelOutputWithPoolingAndCrossAttentions,
BertForPreTrainingOutput,
)
from typing import Optional, Tuple, Union
from .xlm_padding import (
index_first_axis,
index_first_axis_residual,
pad_input,
unpad_input,
)
from .configuration_xlm_roberta import XLMRobertaFlashConfig
from .block import Block
from .embedding import XLMRobertaEmbeddings
from .mha import MHA
from .mlp import FusedMLP, Mlp
try:
from flash_attn.ops.fused_dense import FusedDense
except ImportError:
FusedDense = None
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
try:
from flash_attn.losses.cross_entropy import CrossEntropyLoss
except ImportError:
CrossEntropyLoss = None
logger = logging.getLogger(__name__)
def create_mixer_cls(config, cross_attn=False, return_residual=False):
use_flash_attn = getattr(config, "use_flash_attn", False)
fused_bias_fc = getattr(config, "fused_bias_fc", False)
rotary_kwargs = {}
if config.position_embedding_type == "rotary":
rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size)
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None)
rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False)
mixer_cls = partial(
MHA,
num_heads=config.num_attention_heads,
cross_attn=cross_attn,
dropout=config.attention_probs_dropout_prob,
causal=False,
fused_bias_fc=fused_bias_fc,
use_flash_attn=use_flash_attn,
return_residual=return_residual,
**rotary_kwargs,
)
return mixer_cls
def create_mlp_cls(config, layer_idx=None, return_residual=False):
inner_dim = config.intermediate_size
fused_mlp = getattr(config, "fused_mlp", False)
if fused_mlp:
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
"fused_mlp only " "supports approximate gelu"
)
if not fused_mlp:
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
mlp_cls = partial(
Mlp,
hidden_features=inner_dim,
activation=partial(F.gelu, approximate=approximate),
return_residual=return_residual,
)
else:
if FusedMLP is None:
raise ImportError("fused_dense is not installed")
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
if isinstance(mlp_checkpoint_lvl, Sequence):
assert layer_idx is not None
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
mlp_cls = partial(
FusedMLP,
hidden_features=inner_dim,
checkpoint_lvl=mlp_checkpoint_lvl,
return_residual=return_residual,
)
return mlp_cls
def create_block(config, layer_idx=None):
last_layer_subset = getattr(config, "last_layer_subset", False)
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
# one layer) so we just choose not to return residual in this case.
return_residual = not cross_attn
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
block = Block(
config.hidden_size,
mixer_cls,
mlp_cls,
norm_cls=norm_cls,
prenorm=False,
resid_dropout1=config.hidden_dropout_prob,
resid_dropout2=config.hidden_dropout_prob,
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
return_residual=return_residual,
)
return block
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if module.padding_idx is not None:
nn.init.zeros_(module.weight[module.padding_idx])
class XLMRobertaEncoder(nn.Module):
def __init__(self, config: XLMRobertaFlashConfig):
super().__init__()
self.use_flash_attn = getattr(config, "use_flash_attn", False)
self.layers = nn.ModuleList(
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
self._grad_checkpointing = False
@property
def gradient_checkpointing(self):
return self._grad_checkpointing
@gradient_checkpointing.setter
def gradient_checkpointing(self, value):
self._grad_checkpointing = value
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
"""If subset_mask is not None, we only want output for the subset of the sequence.
This means that we only compute the last layer output for these tokens.
subset_mask: (batch, seqlen), dtype=torch.bool
"""
if key_padding_mask is None or not self.use_flash_attn:
mixer_kwargs = (
{"key_padding_mask": key_padding_mask.bool()} if key_padding_mask is not None else None
)
for layer in self.layers:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if subset_mask is not None:
hidden_states = hidden_states[subset_mask]
else:
batch, seqlen = hidden_states.shape[:2]
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
hidden_states, key_padding_mask
)
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
if subset_mask is None:
for layer in self.layers:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
else:
for layer in self.layers[:-1]:
if self._grad_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
use_reentrant=False,
mixer_kwargs=mixer_kwargs
)
else:
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
if key_padding_mask is not None:
subset_idx = torch.nonzero(
subset_mask[key_padding_mask], as_tuple=False
).flatten()
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
else:
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
subset_cu_seqlens = F.pad(
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
)
hidden_states_subset, hidden_states = index_first_axis_residual(
hidden_states, subset_idx
)
# It's ok to set max_seqlen_q to be much larger
mixer_kwargs = {
"x_kv": hidden_states,
"cu_seqlens": subset_cu_seqlens,
"max_seqlen": max_seqlen_in_batch,
"cu_seqlens_k": cu_seqlens,
"max_seqlen_k": max_seqlen_in_batch,
}
if self._grad_checkpointing:
torch.utils.checkpoint.checkpoint(
self.layers[-1],
hidden_states_subset,
use_reentrant=False,
mixer_kwargs=mixer_kwargs
)
else:
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
return hidden_states
class XLMRobertaPooler(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states, pool=True):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class XLMRobertaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.dense = linear_cls(config.hidden_size, config.hidden_size)
approximate = (
"tanh"
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
else "none"
)
self.transform_act_fn = nn.GELU(approximate=approximate)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
if not self.fused_dropout_add_ln:
hidden_states = self.layer_norm(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps
)
return hidden_states
class XLMRobertaLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
fused_bias_fc = getattr(config, "fused_bias_fc", False)
if fused_bias_fc and FusedDense is None:
raise ImportError("fused_dense is not installed")
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
self.transform = XLMRobertaPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class XLMRobertaPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = XLMRobertaLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class XLMRobertaPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = XLMRobertaFlashConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, XLMRobertaEncoder):
module.gradient_checkpointing = value
class XLMRobertaModel(XLMRobertaPreTrainedModel):
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True):
super().__init__(config)
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if config.vocab_size % self.pad_vocab_size_multiple != 0:
config.vocab_size += self.pad_vocab_size_multiple - (
config.vocab_size % self.pad_vocab_size_multiple
)
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
self.embeddings = XLMRobertaEmbeddings(
config.hidden_size,
config.vocab_size,
config.max_position_embeddings,
config.type_vocab_size,
padding_idx=config.pad_token_id,
)
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = XLMRobertaEncoder(config)
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
def forward(
self,
input_ids,
position_ids=None,
token_type_ids=None,
attention_mask=None,
masked_tokens_mask=None,
return_dict=None,
**kwargs,
):
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining),
we only want the output for the masked tokens. This means that we only compute the last
layer output for these tokens.
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
"""
if kwargs:
for key, value in kwargs.items():
if value is not None:
logger.warning('Flash attention implementation does not support kwargs: %s', key)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
)
# TD [2022-12:18]: Don't need to force residual in fp32
# BERT puts embedding LayerNorm before embedding dropout.
if not self.fused_dropout_add_ln:
hidden_states = self.emb_ln(hidden_states)
else:
hidden_states = layer_norm_fn(
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
)
hidden_states = self.emb_drop(hidden_states)
if masked_tokens_mask is not None:
batch_size, seqlen = input_ids.shape[:2]
# We also need the first column for the CLS token
first_col_mask = torch.zeros(
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
)
first_col_mask[:, 0] = True
subset_mask = masked_tokens_mask | first_col_mask
else:
subset_mask = None
sequence_output = self.encoder(
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
)
if masked_tokens_mask is None:
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
else:
# TD [2022-03-01]: the indexing here is very tricky.
if attention_mask is not None:
subset_idx = subset_mask[attention_mask]
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
else:
pool_input = sequence_output[first_col_mask[subset_mask]]
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
if not return_dict:
return sequence_output, pooled_output
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
)
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
self.lm_head = XLMRobertaLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.roberta.embeddings.word_embeddings
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(prediction_scores.device)
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# class XLMRobertaForPreTraining(XLMRobertaPreTrainedModel):
# def __init__(self, config: XLMRobertaFlashConfig):
# super().__init__(config)
# # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
# # (around 15%) to the classifier heads.
# self.dense_seq_output = getattr(config, "dense_seq_output", False)
# # If last_layer_subset, we only need the compute the last layer for a subset of tokens
# # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
# self.last_layer_subset = getattr(config, "last_layer_subset", False)
# if self.last_layer_subset:
# assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
# use_xentropy = getattr(config, "use_xentropy", False)
# if use_xentropy and CrossEntropyLoss is None:
# raise ImportError("xentropy_cuda is not installed")
# loss_cls = (
# nn.CrossEntropyLoss
# if not use_xentropy
# else partial(CrossEntropyLoss, inplace_backward=True)
# )
#
# self.xlm = XLMRobertaModel(config)
# self.cls = XLMRobertaPreTrainingHeads(config)
# self.mlm_loss = loss_cls(ignore_index=0)
# self.nsp_loss = loss_cls(ignore_index=-1)
#
# # Initialize weights and apply final processing
# self.apply(partial(_init_weights, initializer_range=config.initializer_range))
# self.tie_weights()
#
# def tie_weights(self):
# self.cls.predictions.decoder.weight = self.xlm.embeddings.word_embeddings.weight
#
# def forward(
# self,
# input_ids,
# position_ids=None,
# token_type_ids=None,
# attention_mask=None,
# labels=None,
# next_sentence_label=None,
# ):
# """
# If labels are provided, they must be 0 for masked out tokens (as specified in the attention
# mask).
# Outputs:
# if `labels` and `next_sentence_label` are not `None`:
# Outputs the total_loss which is the sum of the masked language modeling loss and the next
# sentence classification loss.
# if `labels` or `next_sentence_label` is `None`:
# Outputs a tuple comprising
# - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
# - the next sentence classification logits of shape [batch_size, 2].
#
# """
# masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
# outputs = self.xlm(
# input_ids,
# position_ids=position_ids,
# token_type_ids=token_type_ids,
# attention_mask=attention_mask.bool() if attention_mask is not None else None,
# masked_tokens_mask=masked_tokens_mask,
# )
# sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
# if self.dense_seq_output and labels is not None:
# masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
# if not self.last_layer_subset:
# sequence_output = index_first_axis(
# rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
# )
# prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
#
# total_loss = None
# if labels is not None and next_sentence_label is not None:
# if (
# self.dense_seq_output and labels is not None
# ): # prediction_scores are already flattened
# masked_lm_loss = self.mlm_loss(
# prediction_scores, labels.flatten()[masked_token_idx]
# )
# else:
# masked_lm_loss = self.mlm_loss(
# rearrange(prediction_scores, "... v -> (...) v"),
# rearrange(labels, "... -> (...)"),
# )
# next_sentence_loss = self.nsp_loss(
# rearrange(seq_relationship_score, "... t -> (...) t"),
# rearrange(next_sentence_label, "... -> (...)"),
# )
# total_loss = masked_lm_loss.float() + next_sentence_loss.float()
#
# return BertForPreTrainingOutput(
# loss=total_loss,
# prediction_logits=prediction_scores,
# seq_relationship_logits=seq_relationship_score,
# )
def remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
"""
# LayerNorm
def key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
return key
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
# Layers
def key_mapping_layers(key):
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
# LayerNorm
def key_mapping_ln(key):
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
key = re.sub(
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
r"bert.encoder.layers.\1.norm2.\2",
key,
)
key = re.sub(
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
r"cls.predictions.transform.layer_norm.\1",
key,
)
return key
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
# MLP
def key_mapping_mlp(key):
key = re.sub(
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc1.\2",
key,
)
key = re.sub(
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mlp.fc2.\2",
key,
)
return key
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
# Attention
last_layer_subset = getattr(config, "last_layer_subset", False)
for d in range(config.num_hidden_layers):
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
if not (last_layer_subset and d == config.num_hidden_layers - 1):
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
[Wq, Wk, Wv], dim=0
)
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
else:
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0)
def key_mapping_attn(key):
return re.sub(
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
r"bert.encoder.layers.\1.mixer.out_proj.\2",
key,
)
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
def key_mapping_decoder_bias(key):
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
)
decoder_weight = state_dict["cls.predictions.decoder.weight"]
state_dict["cls.predictions.decoder.weight"] = F.pad(
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
)
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
# strongly negative (i.e. the decoder shouldn't predict those indices).
# TD [2022-05-09]: I don't think it affects the MLPerf training.
decoder_bias = state_dict["cls.predictions.decoder.bias"]
state_dict["cls.predictions.decoder.bias"] = F.pad(
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
)
return state_dict
def inv_remap_state_dict(state_dict, config: PretrainedConfig):
"""
Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
This function is meant to be the inverse of remap_state_dict.
"""
# Word embedding
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
if pad_vocab_size_multiple > 1:
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
decoder_weight = state_dict["cls.predictions.decoder.weight"]
decoder_bias = state_dict["cls.predictions.decoder.bias"]
# unpad embeddings
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
: config.orig_vocab_size, :
]
state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :]
state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size]
for d in range(config.num_hidden_layers):
last_layer_subset = getattr(config, "last_layer_subset", False)
if not last_layer_subset or d != (config.num_hidden_layers - 1):
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[
: Wqkv_weights.shape[0] // 3, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[
2 * Wqkv_weights.shape[0] // 3 :, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[
: Wqkv_biases.shape[0] // 3
]
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[
Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[
2 * Wqkv_biases.shape[0] // 3 :
]
else:
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[
: Wkv_weights.shape[0] // 2, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[
Wkv_weights.shape[0] // 2 :, :
]
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
: Wkv_biases.shape[0] // 2
]
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[
Wkv_biases.shape[0] // 2 :
]
def inv_key_mapping_ln(key):
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
key = re.sub(
r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
key,
)
key = re.sub(
r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
r"bert.encoder.layers.\1.output.LayerNorm.\2",
key,
)
key = re.sub(
r"cls.predictions.transform.layer_norm.(weight|bias)",
r"cls.predictions.transform.LayerNorm.\1",
key,
)
return key
def inv_key_mapping_ln_gamma_beta(key):
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
return key
def inv_key_mapping_layers(key):
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
def inv_key_mapping_mlp(key):
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
r"bert.encoder.layer.\1.intermediate.dense.\2",
key,
)
key = re.sub(
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
r"bert.encoder.layer.\1.output.dense.\2",
key,
)
return key
def inv_key_mapping_attn(key):
return re.sub(
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
r"bert.encoder.layer.\1.attention.output.dense.\2",
key,
)
def inv_key_mapping_decoder_bias(key):
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items())
state_dict = OrderedDict(
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_layers(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items())
state_dict = OrderedDict(
(inv_key_mapping_attn(key), value) for key, value in state_dict.items()
)
state_dict = OrderedDict(
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
)
return state_dict |