Create handler.py
Browse files- handler.py +62 -0
handler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor
|
3 |
+
import torch
|
4 |
+
from subprocess import run
|
5 |
+
|
6 |
+
# install tesseract-ocr and pytesseract
|
7 |
+
run("apt install -y tesseract-ocr", shell=True, check=True)
|
8 |
+
run("pip install pytesseract", shell=True, check=True)
|
9 |
+
|
10 |
+
# helper function to unnormalize bboxes for drawing onto the image
|
11 |
+
def unnormalize_box(bbox, width, height):
|
12 |
+
return [
|
13 |
+
width * (bbox[0] / 1000),
|
14 |
+
height * (bbox[1] / 1000),
|
15 |
+
width * (bbox[2] / 1000),
|
16 |
+
height * (bbox[3] / 1000),
|
17 |
+
]
|
18 |
+
|
19 |
+
# set device
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
|
22 |
+
class EndpointHandler:
|
23 |
+
def __init__(self, path=""):
|
24 |
+
# load model and processor from path
|
25 |
+
self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device)
|
26 |
+
self.processor = LayoutLMv2Processor.from_pretrained(path)
|
27 |
+
|
28 |
+
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
|
29 |
+
"""
|
30 |
+
Args:
|
31 |
+
data (:obj:):
|
32 |
+
includes the deserialized image file as PIL.Image
|
33 |
+
"""
|
34 |
+
# process input
|
35 |
+
image = data.pop("inputs", data)
|
36 |
+
|
37 |
+
# process image
|
38 |
+
encoding = self.processor(image, return_tensors="pt")
|
39 |
+
|
40 |
+
# run prediction
|
41 |
+
with torch.inference_mode():
|
42 |
+
outputs = self.model(
|
43 |
+
input_ids=encoding.input_ids.to(device),
|
44 |
+
bbox=encoding.bbox.to(device),
|
45 |
+
attention_mask=encoding.attention_mask.to(device),
|
46 |
+
token_type_ids=encoding.token_type_ids.to(device),
|
47 |
+
)
|
48 |
+
predictions = outputs.logits.softmax(-1)
|
49 |
+
|
50 |
+
# post process output
|
51 |
+
result = []
|
52 |
+
for item, inp_ids, bbox in zip(
|
53 |
+
predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()
|
54 |
+
):
|
55 |
+
label = self.model.config.id2label[int(item.argmax().cpu())]
|
56 |
+
if label == "O":
|
57 |
+
continue
|
58 |
+
score = item.max().item()
|
59 |
+
text = self.processor.tokenizer.decode(inp_ids)
|
60 |
+
bbox = unnormalize_box(bbox.tolist(), image.width, image.height)
|
61 |
+
result.append({"label": label, "score": score, "text": text, "bbox": bbox})
|
62 |
+
return {"predictions": result}
|