jjglilleberg commited on
Commit
d51d11c
1 Parent(s): e855c08

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -12
README.md CHANGED
@@ -7,16 +7,19 @@ model-index:
7
  results: []
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
- probably proofread and complete it, then remove this comment. -->
12
 
13
  # jjglilleberg/bert-finetuned-ner-nbci-disease
14
 
15
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Train Loss: 0.0211
18
- - Validation Loss: 0.0645
19
- - Epoch: 2
 
 
 
 
 
20
 
21
  ## Model description
22
 
@@ -24,18 +27,30 @@ More information needed
24
 
25
  ## Intended uses & limitations
26
 
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
 
33
  ## Training procedure
34
 
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1020, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  - training_precision: mixed_float16
40
 
41
  ### Training results
 
7
  results: []
8
  ---
9
 
 
 
10
 
11
  # jjglilleberg/bert-finetuned-ner-nbci-disease
12
 
13
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [NCBI Disease Dataset](https://www.ncbi.nlm.nih.gov/research/bionlp/Data/disease/).
14
  It achieves the following results on the evaluation set:
15
+ - Precision: 0.759090909090909,
16
+ - Recall: 0.8487928843710292,
17
+ - F1: 0.8014397120575885,
18
+ - Number: 787,
19
+ - Overall_precision: 0.759090909090909,
20
+ - Overall_recall: 0.8487928843710292,
21
+ - Overall_f1: 0.8014397120575885,
22
+ - Overall_accuracy: 0.9824785260799204
23
 
24
  ## Model description
25
 
 
27
 
28
  ## Intended uses & limitations
29
 
30
+ The intended use of this model is for Disease Name Recognition and Concept Normalization.
 
 
 
 
31
 
32
  ## Training procedure
33
 
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
+ - optimizer:
38
+ - 'name': 'AdamWeightDecay',
39
+ - 'learning_rate':
40
+ - 'class_name': 'PolynomialDecay',
41
+ - 'config':
42
+ - 'initial_learning_rate': 2e-05,
43
+ - 'decay_steps': 1020,
44
+ - 'end_learning_rate': 0.0,
45
+ - 'power': 1.0,
46
+ - 'cycle': False,
47
+ - 'name': None
48
+ - 'decay': 0.0,
49
+ - 'beta_1': 0.9,
50
+ - 'beta_2': 0.999,
51
+ - 'epsilon': 1e-08,
52
+ - 'amsgrad': False,
53
+ - 'weight_decay_rate': 0.01
54
  - training_precision: mixed_float16
55
 
56
  ### Training results