File size: 3,569 Bytes
292a6f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_replace_iter2_sftsd2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# collapse_gemma-2-2b_hs2_replace_iter2_sftsd2
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5087
- Num Input Tokens Seen: 7865232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log | 0 | 0 | 1.3956 | 0 |
| 1.7513 | 0.0345 | 5 | 1.3040 | 274624 |
| 1.4363 | 0.0690 | 10 | 1.1967 | 546200 |
| 1.2021 | 0.1035 | 15 | 1.1697 | 817584 |
| 1.0165 | 0.1380 | 20 | 1.1870 | 1088176 |
| 0.9588 | 0.1725 | 25 | 1.2338 | 1358336 |
| 0.856 | 0.2070 | 30 | 1.3377 | 1637992 |
| 0.6142 | 0.2415 | 35 | 1.3806 | 1911376 |
| 0.5705 | 0.2760 | 40 | 1.4600 | 2181176 |
| 0.5098 | 0.3105 | 45 | 1.5034 | 2462856 |
| 0.3225 | 0.3450 | 50 | 1.5081 | 2737752 |
| 0.3129 | 0.3795 | 55 | 1.5481 | 3012656 |
| 0.3444 | 0.4140 | 60 | 1.4783 | 3279744 |
| 0.2324 | 0.4485 | 65 | 1.4703 | 3547808 |
| 0.234 | 0.4830 | 70 | 1.4699 | 3817328 |
| 0.2621 | 0.5175 | 75 | 1.4305 | 4097184 |
| 0.1199 | 0.5520 | 80 | 1.4580 | 4367848 |
| 0.1915 | 0.5865 | 85 | 1.4274 | 4640592 |
| 0.2214 | 0.6210 | 90 | 1.4877 | 4922032 |
| 0.1506 | 0.6555 | 95 | 1.4413 | 5193088 |
| 0.1584 | 0.6900 | 100 | 1.4564 | 5464864 |
| 0.2169 | 0.7245 | 105 | 1.4504 | 5739032 |
| 0.1219 | 0.7589 | 110 | 1.4286 | 6012736 |
| 0.1687 | 0.7934 | 115 | 1.4840 | 6274808 |
| 0.1776 | 0.8279 | 120 | 1.4578 | 6548312 |
| 0.1197 | 0.8624 | 125 | 1.4703 | 6821112 |
| 0.1035 | 0.8969 | 130 | 1.4563 | 7098736 |
| 0.1298 | 0.9314 | 135 | 1.4510 | 7369552 |
| 0.0958 | 0.9659 | 140 | 1.4814 | 7640632 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|