End of training
Browse files- README.md +19 -21
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,31 +56,29 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch
|
68 |
-
|
69 |
-
| 2.
|
70 |
-
|
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
| 0.5106 | 12.0 | 1356 | 0.7286 | 0.81 |
|
81 |
-
| 0.4662 | 13.0 | 1469 | 0.6701 | 0.8 |
|
82 |
-
| 0.6223 | 14.0 | 1582 | 0.6728 | 0.8 |
|
83 |
-
| 0.3604 | 15.0 | 1695 | 0.6504 | 0.81 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.72
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.3187
|
36 |
+
- Accuracy: 0.72
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 32
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 11
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
+
| 2.2889 | 0.9912 | 28 | 2.2613 | 0.38 |
|
72 |
+
| 2.1553 | 1.9823 | 56 | 2.0953 | 0.56 |
|
73 |
+
| 1.9626 | 2.9735 | 84 | 1.8820 | 0.54 |
|
74 |
+
| 1.7839 | 4.0 | 113 | 1.7308 | 0.61 |
|
75 |
+
| 1.6749 | 4.9912 | 141 | 1.5920 | 0.64 |
|
76 |
+
| 1.5595 | 5.9823 | 169 | 1.5004 | 0.68 |
|
77 |
+
| 1.5266 | 6.9735 | 197 | 1.4368 | 0.68 |
|
78 |
+
| 1.4459 | 8.0 | 226 | 1.3776 | 0.71 |
|
79 |
+
| 1.4152 | 8.9912 | 254 | 1.3481 | 0.71 |
|
80 |
+
| 1.3766 | 9.9823 | 282 | 1.3242 | 0.72 |
|
81 |
+
| 1.3682 | 10.9027 | 308 | 1.3187 | 0.72 |
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2df4cf3bfd649bedab647add4d1961e2a18362ca156226f0259413ff18c44cda
|
3 |
size 94771728
|