End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -53,32 +53,28 @@ More information needed
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 2e-05
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps:
|
60 |
-
- total_train_batch_size:
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
-
- lr_scheduler_warmup_ratio: 0.
|
64 |
-
- num_epochs:
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
| 1.4459 | 8.0 | 226 | 1.3776 | 0.71 |
|
79 |
-
| 1.4152 | 8.9912 | 254 | 1.3481 | 0.71 |
|
80 |
-
| 1.3766 | 9.9823 | 282 | 1.3242 | 0.72 |
|
81 |
-
| 1.3682 | 10.9027 | 308 | 1.3187 | 0.72 |
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.77
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7182
|
36 |
+
- Accuracy: 0.77
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 12
|
57 |
+
- eval_batch_size: 12
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 24
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.05
|
64 |
+
- num_epochs: 20
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
+
| 0.0118 | 2.6667 | 100 | 1.4117 | 0.75 |
|
72 |
+
| 0.0083 | 5.3333 | 200 | 1.4954 | 0.74 |
|
73 |
+
| 0.0057 | 8.0 | 300 | 1.6342 | 0.75 |
|
74 |
+
| 0.0047 | 10.6667 | 400 | 1.6888 | 0.77 |
|
75 |
+
| 0.0031 | 13.3333 | 500 | 1.6774 | 0.77 |
|
76 |
+
| 0.0028 | 16.0 | 600 | 1.7023 | 0.77 |
|
77 |
+
| 0.0033 | 18.6667 | 700 | 1.7182 | 0.77 |
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
runs/Apr24_23-06-31_98addcb0e85b/events.out.tfevents.1713999993.98addcb0e85b.3842.6
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1ad3edcf4a1b12744ae014750023ffa8aad691786c7e18631d2114747f6a4a8
|
3 |
+
size 9998
|