--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6504 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2428 | 1.0 | 113 | 2.1981 | 0.35 | | 1.7527 | 2.0 | 226 | 1.7611 | 0.55 | | 1.6002 | 3.0 | 339 | 1.4516 | 0.65 | | 1.2101 | 4.0 | 452 | 1.2245 | 0.7 | | 1.1006 | 5.0 | 565 | 1.0758 | 0.73 | | 0.9583 | 6.0 | 678 | 0.9477 | 0.76 | | 0.8705 | 7.0 | 791 | 0.8907 | 0.77 | | 0.6892 | 8.0 | 904 | 0.8438 | 0.75 | | 0.6141 | 9.0 | 1017 | 0.7574 | 0.79 | | 0.5614 | 10.0 | 1130 | 0.7300 | 0.81 | | 0.5347 | 11.0 | 1243 | 0.6830 | 0.8 | | 0.5106 | 12.0 | 1356 | 0.7286 | 0.81 | | 0.4662 | 13.0 | 1469 | 0.6701 | 0.8 | | 0.6223 | 14.0 | 1582 | 0.6728 | 0.8 | | 0.3604 | 15.0 | 1695 | 0.6504 | 0.81 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1