File size: 2,265 Bytes
c87e3ad 7285fe7 c87e3ad 7285fe7 c87e3ad 7285fe7 c87e3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-dysarthria
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-dysarthria
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0615
- Wer: 0.1764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 16.998 | 2.17 | 400 | 3.4205 | 1.0 |
| 3.6507 | 4.34 | 800 | 3.2819 | 1.0 |
| 3.2148 | 6.5 | 1200 | 3.0239 | 1.0 |
| 2.8464 | 8.67 | 1600 | 2.5810 | 1.0 |
| 2.3923 | 10.84 | 2000 | 2.2368 | 1.0 |
| 1.9358 | 13.01 | 2400 | 1.7072 | 1.0 |
| 1.5043 | 15.18 | 2800 | 1.3435 | 1.0 |
| 1.1169 | 17.34 | 3200 | 0.8979 | 0.9701 |
| 0.749 | 19.51 | 3600 | 0.5764 | 0.7490 |
| 0.4855 | 21.68 | 4000 | 0.2876 | 0.4763 |
| 0.2902 | 23.85 | 4400 | 0.1645 | 0.3379 |
| 0.198 | 26.02 | 4800 | 0.0988 | 0.2307 |
| 0.1358 | 28.18 | 5200 | 0.0615 | 0.1764 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|