Upload 11 files
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +87 -1
- config.json +26 -0
- config_sentence_transformers.json +7 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +9 -0
- tokenizer.json +3 -0
- tokenizer_config.json +20 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,89 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
|
8 |
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This model is a finetuned version of `intfloat/multilingual-e5-small` using the ASSIN2 dataset for similarity score.
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
+
|
16 |
+
<!--- Describe your model here -->
|
17 |
+
|
18 |
+
## Usage (Sentence-Transformers)
|
19 |
+
|
20 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
21 |
+
|
22 |
+
```
|
23 |
+
pip install -U sentence-transformers
|
24 |
+
```
|
25 |
+
|
26 |
+
Then you can use the model like this:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from sentence_transformers import SentenceTransformer
|
30 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
+
|
32 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
33 |
+
embeddings = model.encode(sentences)
|
34 |
+
print(embeddings)
|
35 |
+
```
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
## Evaluation Results
|
40 |
+
|
41 |
+
<!--- Describe how your model was evaluated -->
|
42 |
+
This model was evaluated using the ASSIN2 test dataset calculating the Spearman and Pearson rank correlation. The results found were: 0.79934
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 204 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
58 |
+
|
59 |
+
Parameters of the fit()-Method:
|
60 |
+
```
|
61 |
+
{
|
62 |
+
"epochs": 10,
|
63 |
+
"evaluation_steps": 100,
|
64 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
65 |
+
"max_grad_norm": 1,
|
66 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
67 |
+
"optimizer_params": {
|
68 |
+
"lr": 2e-05
|
69 |
+
},
|
70 |
+
"scheduler": "WarmupLinear",
|
71 |
+
"steps_per_epoch": null,
|
72 |
+
"warmup_steps": 100,
|
73 |
+
"weight_decay": 0.01
|
74 |
+
}
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
## Full Model Architecture
|
79 |
+
```
|
80 |
+
SentenceTransformer(
|
81 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
82 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
83 |
+
(2): Normalize()
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Citing & Authors
|
88 |
+
|
89 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/e/sentence-transformers/intfloat_multilingual-e5-small/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.32.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250037
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.32.0",
|
5 |
+
"pytorch": "2.0.1+cu117"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f48b789f68de4dfa863e0fff4d7c8bf4754d6a2071598b48ee7c0c9d5c6a9b0
|
3 |
+
size 470681769
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "<mask>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ca5f734b9407eb910ec87ecf2a0325a7c5c3436836ba12c600b0ce787b8c3a6
|
3 |
+
size 17082983
|
tokenizer_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 512,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"sep_token": "</s>",
|
17 |
+
"sp_model_kwargs": {},
|
18 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
19 |
+
"unk_token": "<unk>"
|
20 |
+
}
|