jncraton commited on
Commit
f9da622
1 Parent(s): 486e80e

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +59 -0
  2. config.json +7 -0
  3. model.bin +3 -0
  4. special_tokens_map.json +34 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +154 -0
  7. vocabulary.json +0 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ ---
7
+
8
+
9
+ # SmolLM-Instruct
10
+
11
+ <center>
12
+ <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
13
+ </center>
14
+
15
+
16
+ ## Model Summary
17
+
18
+ SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are built on Cosmo-Corpus, a meticulously curated high-quality training dataset. Cosmo-Corpus includes Cosmopedia v2 (28B tokens of synthetic textbooks and stories generated by Mixtral), Python-Edu (4B tokens of educational Python samples from The Stack), and FineWeb-Edu (220B tokens of deduplicated educational web samples from FineWeb). For duther details, we refer to our blogpost TODO.
19
+
20
+ To build SmolLM-Instruct, we instruction tuned the models using publicly available permissive instruction datasets. We trained all three models for one epoch on the permissive subset of the WebInstructSub dataset, combined with StarCoder2-Self-OSS-Instruct. Following this, we performed DPO (Direct Preference Optimization) for one epoch: using HelpSteer for the 135M and 1.7B models, and argilla/dpo-mix-7k for the 360M model. We followed the training parameters from the Zephyr-Gemma recipe in the alignment handbook, but adjusted the SFT (Supervised Fine-Tuning) learning rate to 3e-4.
21
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
22
+
23
+ This is the SmolLM-360M-Instruct.
24
+
25
+ ### Generation
26
+ ```bash
27
+ pip install transformers
28
+ ```
29
+
30
+ ```python
31
+ # pip install transformers
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+ checkpoint = "HuggingFaceTB/SmolLM-360M-Instruct"
34
+
35
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
36
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
37
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
38
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
39
+
40
+ messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
41
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
42
+ print(input_text)
43
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
44
+ outputs = model.generate(inputs, max_new_tokens=100, temperature=0.6, top_p=0.92, do_sample=True)
45
+ print(tokenizer.decode(outputs[0]))
46
+ ```
47
+
48
+ # Limitations
49
+
50
+ While SmolLM models have been trained on a diverse dataset including educational content and synthetic texts, they have limitations. The models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. For a more comprehensive discussion of the models' capabilities and limitations, please refer to our full blog post.
51
+
52
+ # Citation
53
+ ```bash
54
+ @misc{allal2024SmolLM,
55
+ title={SmolLM - blazingly fast and remarkably powerful},
56
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Leandro von Werra and Thomas Wolf},
57
+ year={2024},
58
+ }
59
+ ```
config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|im_start|>",
3
+ "eos_token": "<|im_end|>",
4
+ "layer_norm_epsilon": 1e-05,
5
+ "multi_query_attention": true,
6
+ "unk_token": "<|endoftext|>"
7
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ba5d423e69c082de36aa85a2e0d64610c06c1f337fb22e5e82d02b057d08a13
3
+ size 363216360
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_start|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<repo_name>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<reponame>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<file_sep>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<filename>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<gh_stars>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_start>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_comment>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<issue_closed>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_start>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_text>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_code>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<jupyter_script>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<empty_output>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ }
140
+ },
141
+ "additional_special_tokens": [
142
+ "<|im_start|>",
143
+ "<|im_end|>"
144
+ ],
145
+ "bos_token": "<|im_start|>",
146
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
147
+ "clean_up_tokenization_spaces": false,
148
+ "eos_token": "<|im_end|>",
149
+ "model_max_length": 2048,
150
+ "pad_token": "<|im_end|>",
151
+ "tokenizer_class": "GPT2Tokenizer",
152
+ "unk_token": "<|endoftext|>",
153
+ "vocab_size": 49152
154
+ }
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff