--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - precision - recall model-index: - name: bert-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: emotion split: train args: emotion metrics: - name: Precision type: precision value: 0.6916963308315679 - name: Recall type: recall value: 0.7047852871456702 --- # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.3717 - Precision: 0.6917 - Recall: 0.7048 - Fscore: 0.6955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8838 | 1.0 | 815 | 0.7944 | 0.7238 | 0.6662 | 0.6860 | | 0.5708 | 2.0 | 1630 | 1.0606 | 0.6594 | 0.6139 | 0.6299 | | 0.3045 | 3.0 | 2445 | 1.3717 | 0.6917 | 0.7048 | 0.6955 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2