test / train_dreambooth_rnpd_sdxl_lora.py
joachimsallstrom's picture
Upload 5 files
a0da56a
import argparse
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import subprocess
import sys
import gc
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from transformers import AutoTokenizer, PretrainedConfig
import bitsandbytes as bnb
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from contextlib import nullcontext
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, CLIPTextModelWithProjection
from lora_sdxl import *
logger = get_logger(__name__)
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder=subfolder,
use_auth_token=True
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default="",
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument(
"--save_n_steps",
type=int,
default=1,
help=("Save the model every n global_steps"),
)
parser.add_argument(
"--save_starting_step",
type=int,
default=1,
help=("The step from which it starts saving intermediary checkpoints"),
)
parser.add_argument(
"--stop_text_encoder_training",
type=int,
default=1000000,
help=("The step at which the text_encoder is no longer trained"),
)
parser.add_argument(
"--image_captions_filename",
action="store_true",
help="Get captions from filename",
)
parser.add_argument(
"--Resumetr",
type=str,
default="False",
help="Resume training info",
)
parser.add_argument(
"--Session_dir",
type=str,
default="",
help="Current session directory",
)
parser.add_argument(
"--external_captions",
action="store_true",
default=False,
help="Use captions stored in a txt file",
)
parser.add_argument(
"--captions_dir",
type=str,
default="",
help="The folder where captions files are stored",
)
parser.add_argument(
"--offset_noise",
action="store_true",
default=False,
help="Offset Noise",
)
parser.add_argument(
"--ofstnselvl",
type=float,
default=0.03,
help="Offset Noise amount",
)
parser.add_argument(
"--resume",
action="store_true",
default=False,
help="resume training",
)
parser.add_argument(
"--dim",
type=int,
default=64,
help="LoRa dimension",
)
args = parser.parse_args()
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
args,
tokenizers,
text_encoders,
size=512,
center_crop=False,
instance_prompt_hidden_states=None,
instance_unet_added_conditions=None,
):
self.size = size
self.tokenizers=tokenizers
self.text_encoders=text_encoders
self.center_crop = center_crop
self.instance_prompt_hidden_states = instance_prompt_hidden_states
self.instance_unet_added_conditions = instance_unet_added_conditions
self.image_captions_filename = None
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self._length = self.num_instance_images
if args.image_captions_filename:
self.image_captions_filename = True
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index, args=parse_args()):
example = {}
path = self.instance_images_path[index % self.num_instance_images]
instance_image = Image.open(path)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
if self.image_captions_filename:
filename = Path(path).stem
pt=''.join([i for i in filename if not i.isdigit()])
pt=pt.replace("_"," ")
pt=pt.replace("(","")
pt=pt.replace(")","")
pt=pt.replace("-","")
pt=pt.replace("conceptimagedb","")
if args.external_captions:
cptpth=os.path.join(args.captions_dir, filename+'.txt')
if os.path.exists(cptpth):
with open(cptpth, "r") as f:
instance_prompt=f.read()
else:
instance_prompt=pt
else:
instance_prompt = pt
example["instance_images"] = self.image_transforms(instance_image)
with torch.no_grad():
example["instance_prompt_ids"], example["instance_added_cond_kwargs"]= compute_embeddings(args, instance_prompt, self.text_encoders, self.tokenizers)
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def encode_prompt(text_encoders, tokenizers, prompt):
prompt_embeds_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
with torch.no_grad():
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
add_text_embeds = [example["instance_added_cond_kwargs"]["text_embeds"] for example in examples]
add_time_ids = [example["instance_added_cond_kwargs"]["time_ids"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).half()
input_ids = torch.cat(input_ids, dim=0)
add_text_embeds = torch.cat(add_text_embeds, dim=0)
add_time_ids = torch.cat(add_time_ids, dim=0)
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
"unet_added_conditions": {"text_embeds": add_text_embeds, "time_ids": add_time_ids},
}
return batch
def compute_embeddings(args, prompt, text_encoders, tokenizers):
original_size = (args.resolution, args.resolution)
target_size = (args.resolution, args.resolution)
crops_coords_top_left = (0, 0)
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
add_text_embeds = pooled_prompt_embeds
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
prompt_embeds = prompt_embeds.to('cuda')
add_text_embeds = add_text_embeds.to('cuda')
add_time_ids = add_time_ids.to('cuda', dtype=prompt_embeds.dtype)
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
return prompt_embeds, unet_added_cond_kwargs
class LatentsDataset(Dataset):
def __init__(self, latents_cache, text_encoder_cache, cond_cache):
self.latents_cache = latents_cache
self.text_encoder_cache = text_encoder_cache
self.cond_cache = cond_cache
def __len__(self):
return len(self.latents_cache)
def __getitem__(self, index):
return self.latents_cache[index], self.text_encoder_cache[index], self.cond_cache[index]
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizers
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
use_fast=False,
use_auth_token=True,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
use_fast=False,
use_auth_token=True
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, subfolder="text_encoder"
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, subfolder="text_encoder_2"
)
# Load scheduler and models
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True,
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", use_auth_token=True
)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True
)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.eval()
text_encoder_two.eval()
vae.eval()
model_path = os.path.join(args.Session_dir, os.path.basename(args.Session_dir) + ".safetensors")
network = create_network(1, args.dim, 20000, unet)
if args.resume:
network.load_weights(model_path)
def set_diffusers_xformers_flag(model, valid):
def fn_recursive_set_mem_eff(module: torch.nn.Module):
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
module.set_use_memory_efficient_attention_xformers(valid)
for child in module.children():
fn_recursive_set_mem_eff(child)
fn_recursive_set_mem_eff(model)
set_diffusers_xformers_flag(unet, True)
network.apply_to(unet, True)
trainable_params = network.parameters()
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
optimizer_class = bnb.optim.AdamW8bit
optimizer = optimizer_class(
trainable_params,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", use_auth_token=True)
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
tokenizers=tokenizers,
text_encoders=text_encoders,
size=args.resolution,
center_crop=args.center_crop,
args=args
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples),
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
network, optimizer, train_dataloader, lr_scheduler)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
network.prepare_grad_etc(network)
latents_cache = []
text_encoder_cache = []
cond_cache= []
for batch in train_dataloader:
with torch.no_grad():
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
batch["unet_added_conditions"] = batch["unet_added_conditions"]
batch["pixel_values"]=(vae.encode(batch["pixel_values"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample() * vae.config.scaling_factor)
latents_cache.append(batch["pixel_values"])
text_encoder_cache.append(batch["input_ids"])
cond_cache.append(batch["unet_added_conditions"])
train_dataset = LatentsDataset(latents_cache, text_encoder_cache, cond_cache)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True)
del vae, tokenizers, text_encoders
gc.collect()
torch.cuda.empty_cache()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
def bar(prg):
br='|'+'█' * prg + ' ' * (25-prg)+'|'
return br
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
network.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
with torch.no_grad():
model_input = batch[0][0]
# Sample noise that we'll add to the latents
if args.offset_noise:
noise = torch.randn_like(model_input)# + args.ofstnselvl * torch.randn(model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device)
else:
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device)
timesteps = timesteps.long()
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
model_pred = unet(noisy_model_input, timesteps, batch[0][1], added_cond_kwargs=batch[0][2]).sample
# Get the target for loss depending on the prediction type
target = noise
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
fll=round((global_step*100)/args.max_train_steps)
fll=round(fll/4)
pr=bar(fll)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
progress_bar.set_description_str("Progress")
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
network = accelerator.unwrap_model(network)
accelerator.end_training()
network.save_weights(model_path, torch.float16, None)
accelerator.end_training()
if __name__ == "__main__":
main()