|
import argparse |
|
import itertools |
|
import math |
|
import os |
|
from pathlib import Path |
|
from typing import Optional |
|
import subprocess |
|
import sys |
|
|
|
import gc |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.utils.data import Dataset |
|
from transformers import AutoTokenizer, PretrainedConfig |
|
import bitsandbytes as bnb |
|
|
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from contextlib import nullcontext |
|
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from huggingface_hub import HfFolder, Repository, whoami |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, CLIPTextModelWithProjection |
|
|
|
from lora_sdxl import * |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
pretrained_model_name_or_path: str, subfolder: str = "text_encoder" |
|
): |
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder=subfolder, |
|
use_auth_token=True |
|
) |
|
model_class = text_encoder_config.architectures[0] |
|
|
|
if model_class == "CLIPTextModel": |
|
from transformers import CLIPTextModel |
|
|
|
return CLIPTextModel |
|
elif model_class == "CLIPTextModelWithProjection": |
|
from transformers import CLIPTextModelWithProjection |
|
|
|
return CLIPTextModelWithProjection |
|
else: |
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--instance_data_dir", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="A folder containing the training data of instance images.", |
|
) |
|
parser.add_argument( |
|
"--class_data_dir", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="A folder containing the training data of class images.", |
|
) |
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
help="The prompt with identifier specifying the instance", |
|
) |
|
parser.add_argument( |
|
"--class_prompt", |
|
type=str, |
|
default="", |
|
help="The prompt to specify images in the same class as provided instance images.", |
|
) |
|
parser.add_argument( |
|
"--with_prior_preservation", |
|
default=False, |
|
action="store_true", |
|
help="Flag to add prior preservation loss.", |
|
) |
|
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") |
|
parser.add_argument( |
|
"--num_class_images", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Minimal class images for prior preservation loss. If not have enough images, additional images will be" |
|
" sampled with class_prompt." |
|
), |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" |
|
) |
|
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument( |
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=5e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--save_n_steps", |
|
type=int, |
|
default=1, |
|
help=("Save the model every n global_steps"), |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--save_starting_step", |
|
type=int, |
|
default=1, |
|
help=("The step from which it starts saving intermediary checkpoints"), |
|
) |
|
|
|
parser.add_argument( |
|
"--stop_text_encoder_training", |
|
type=int, |
|
default=1000000, |
|
help=("The step at which the text_encoder is no longer trained"), |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--image_captions_filename", |
|
action="store_true", |
|
help="Get captions from filename", |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--Resumetr", |
|
type=str, |
|
default="False", |
|
help="Resume training info", |
|
) |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--Session_dir", |
|
type=str, |
|
default="", |
|
help="Current session directory", |
|
) |
|
|
|
parser.add_argument( |
|
"--external_captions", |
|
action="store_true", |
|
default=False, |
|
help="Use captions stored in a txt file", |
|
) |
|
|
|
parser.add_argument( |
|
"--captions_dir", |
|
type=str, |
|
default="", |
|
help="The folder where captions files are stored", |
|
) |
|
|
|
parser.add_argument( |
|
"--offset_noise", |
|
action="store_true", |
|
default=False, |
|
help="Offset Noise", |
|
) |
|
|
|
parser.add_argument( |
|
"--ofstnselvl", |
|
type=float, |
|
default=0.03, |
|
help="Offset Noise amount", |
|
) |
|
|
|
parser.add_argument( |
|
"--resume", |
|
action="store_true", |
|
default=False, |
|
help="resume training", |
|
) |
|
|
|
parser.add_argument( |
|
"--dim", |
|
type=int, |
|
default=64, |
|
help="LoRa dimension", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
|
|
class DreamBoothDataset(Dataset): |
|
""" |
|
A dataset to prepare the instance and class images with the prompts for fine-tuning the model. |
|
It pre-processes the images and the tokenizes prompts. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
instance_data_root, |
|
args, |
|
tokenizers, |
|
text_encoders, |
|
size=512, |
|
center_crop=False, |
|
instance_prompt_hidden_states=None, |
|
instance_unet_added_conditions=None, |
|
): |
|
self.size = size |
|
self.tokenizers=tokenizers |
|
self.text_encoders=text_encoders |
|
self.center_crop = center_crop |
|
self.instance_prompt_hidden_states = instance_prompt_hidden_states |
|
self.instance_unet_added_conditions = instance_unet_added_conditions |
|
self.image_captions_filename = None |
|
|
|
self.instance_data_root = Path(instance_data_root) |
|
if not self.instance_data_root.exists(): |
|
raise ValueError("Instance images root doesn't exists.") |
|
|
|
self.instance_images_path = list(Path(instance_data_root).iterdir()) |
|
self.num_instance_images = len(self.instance_images_path) |
|
self._length = self.num_instance_images |
|
|
|
if args.image_captions_filename: |
|
self.image_captions_filename = True |
|
|
|
self.image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, index, args=parse_args()): |
|
example = {} |
|
path = self.instance_images_path[index % self.num_instance_images] |
|
instance_image = Image.open(path) |
|
if not instance_image.mode == "RGB": |
|
instance_image = instance_image.convert("RGB") |
|
|
|
if self.image_captions_filename: |
|
filename = Path(path).stem |
|
|
|
pt=''.join([i for i in filename if not i.isdigit()]) |
|
pt=pt.replace("_"," ") |
|
pt=pt.replace("(","") |
|
pt=pt.replace(")","") |
|
pt=pt.replace("-","") |
|
pt=pt.replace("conceptimagedb","") |
|
|
|
if args.external_captions: |
|
cptpth=os.path.join(args.captions_dir, filename+'.txt') |
|
if os.path.exists(cptpth): |
|
with open(cptpth, "r") as f: |
|
instance_prompt=f.read() |
|
else: |
|
instance_prompt=pt |
|
else: |
|
instance_prompt = pt |
|
|
|
example["instance_images"] = self.image_transforms(instance_image) |
|
with torch.no_grad(): |
|
example["instance_prompt_ids"], example["instance_added_cond_kwargs"]= compute_embeddings(args, instance_prompt, self.text_encoders, self.tokenizers) |
|
|
|
return example |
|
|
|
|
|
class PromptDataset(Dataset): |
|
"A simple dataset to prepare the prompts to generate class images on multiple GPUs." |
|
|
|
def __init__(self, prompt, num_samples): |
|
self.prompt = prompt |
|
self.num_samples = num_samples |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __getitem__(self, index): |
|
example = {} |
|
example["prompt"] = self.prompt |
|
example["index"] = index |
|
return example |
|
|
|
|
|
def encode_prompt(text_encoders, tokenizers, prompt): |
|
prompt_embeds_list = [] |
|
|
|
for tokenizer, text_encoder in zip(tokenizers, text_encoders): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def collate_fn(examples): |
|
|
|
input_ids = [example["instance_prompt_ids"] for example in examples] |
|
pixel_values = [example["instance_images"] for example in examples] |
|
add_text_embeds = [example["instance_added_cond_kwargs"]["text_embeds"] for example in examples] |
|
add_time_ids = [example["instance_added_cond_kwargs"]["time_ids"] for example in examples] |
|
|
|
pixel_values = torch.stack(pixel_values) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).half() |
|
|
|
input_ids = torch.cat(input_ids, dim=0) |
|
add_text_embeds = torch.cat(add_text_embeds, dim=0) |
|
add_time_ids = torch.cat(add_time_ids, dim=0) |
|
|
|
batch = { |
|
"input_ids": input_ids, |
|
"pixel_values": pixel_values, |
|
"unet_added_conditions": {"text_embeds": add_text_embeds, "time_ids": add_time_ids}, |
|
} |
|
|
|
return batch |
|
|
|
|
|
def compute_embeddings(args, prompt, text_encoders, tokenizers): |
|
original_size = (args.resolution, args.resolution) |
|
target_size = (args.resolution, args.resolution) |
|
crops_coords_top_left = (0, 0) |
|
|
|
with torch.no_grad(): |
|
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) |
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
|
|
prompt_embeds = prompt_embeds.to('cuda') |
|
add_text_embeds = add_text_embeds.to('cuda') |
|
add_time_ids = add_time_ids.to('cuda', dtype=prompt_embeds.dtype) |
|
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
return prompt_embeds, unet_added_cond_kwargs |
|
|
|
|
|
class LatentsDataset(Dataset): |
|
def __init__(self, latents_cache, text_encoder_cache, cond_cache): |
|
self.latents_cache = latents_cache |
|
self.text_encoder_cache = text_encoder_cache |
|
self.cond_cache = cond_cache |
|
|
|
def __len__(self): |
|
return len(self.latents_cache) |
|
|
|
def __getitem__(self, index): |
|
return self.latents_cache[index], self.text_encoder_cache[index], self.cond_cache[index] |
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
use_fast=False, |
|
use_auth_token=True, |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
use_fast=False, |
|
use_auth_token=True |
|
) |
|
|
|
|
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder" |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2" |
|
) |
|
|
|
|
|
|
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True, |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", use_auth_token=True |
|
) |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True |
|
) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
text_encoder_one.eval() |
|
text_encoder_two.eval() |
|
vae.eval() |
|
|
|
model_path = os.path.join(args.Session_dir, os.path.basename(args.Session_dir) + ".safetensors") |
|
network = create_network(1, args.dim, 20000, unet) |
|
if args.resume: |
|
network.load_weights(model_path) |
|
|
|
def set_diffusers_xformers_flag(model, valid): |
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
fn_recursive_set_mem_eff(model) |
|
|
|
set_diffusers_xformers_flag(unet, True) |
|
|
|
network.apply_to(unet, True) |
|
trainable_params = network.parameters() |
|
|
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
|
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
|
|
optimizer = optimizer_class( |
|
trainable_params, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", use_auth_token=True) |
|
|
|
train_dataset = DreamBoothDataset( |
|
instance_data_root=args.instance_data_dir, |
|
tokenizers=tokenizers, |
|
text_encoders=text_encoders, |
|
size=args.resolution, |
|
center_crop=args.center_crop, |
|
args=args |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
shuffle=True, |
|
collate_fn=lambda examples: collate_fn(examples), |
|
) |
|
|
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
|
|
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
network, optimizer, train_dataloader, lr_scheduler) |
|
|
|
weight_dtype = torch.float32 |
|
if args.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif args.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
network.prepare_grad_etc(network) |
|
|
|
|
|
latents_cache = [] |
|
text_encoder_cache = [] |
|
cond_cache= [] |
|
for batch in train_dataloader: |
|
with torch.no_grad(): |
|
|
|
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True) |
|
batch["unet_added_conditions"] = batch["unet_added_conditions"] |
|
|
|
batch["pixel_values"]=(vae.encode(batch["pixel_values"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample() * vae.config.scaling_factor) |
|
|
|
latents_cache.append(batch["pixel_values"]) |
|
text_encoder_cache.append(batch["input_ids"]) |
|
cond_cache.append(batch["unet_added_conditions"]) |
|
|
|
train_dataset = LatentsDataset(latents_cache, text_encoder_cache, cond_cache) |
|
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True) |
|
|
|
del vae, tokenizers, text_encoders |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("dreambooth", config=vars(args)) |
|
|
|
def bar(prg): |
|
br='|'+'█' * prg + ' ' * (25-prg)+'|' |
|
return br |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad() |
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
global_step = 0 |
|
|
|
for epoch in range(args.num_train_epochs): |
|
unet.train() |
|
network.train() |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
|
|
with torch.no_grad(): |
|
model_input = batch[0][0] |
|
|
|
|
|
if args.offset_noise: |
|
noise = torch.randn_like(model_input) |
|
else: |
|
noise = torch.randn_like(model_input) |
|
|
|
bsz = model_input.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device) |
|
timesteps = timesteps.long() |
|
|
|
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
with accelerator.autocast(): |
|
model_pred = unet(noisy_model_input, timesteps, batch[0][1], added_cond_kwargs=batch[0][2]).sample |
|
|
|
|
|
target = noise |
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
accelerator.backward(loss) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
fll=round((global_step*100)/args.max_train_steps) |
|
fll=round(fll/4) |
|
pr=bar(fll) |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
progress_bar.set_description_str("Progress") |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
network = accelerator.unwrap_model(network) |
|
accelerator.end_training() |
|
network.save_weights(model_path, torch.float16, None) |
|
|
|
accelerator.end_training() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|