--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-massive-intent-detection-english results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive args: en-US metrics: - name: Accuracy type: accuracy value: 0.886684599865501 --- # distilbert-base-uncased-finetuned-massive-intent-detection-english This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.4873 - Accuracy: 0.8867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5849 | 1.0 | 360 | 1.3826 | 0.7359 | | 1.0662 | 2.0 | 720 | 0.7454 | 0.8357 | | 0.5947 | 3.0 | 1080 | 0.5668 | 0.8642 | | 0.3824 | 4.0 | 1440 | 0.5007 | 0.8770 | | 0.2649 | 5.0 | 1800 | 0.4829 | 0.8824 | | 0.1877 | 6.0 | 2160 | 0.4843 | 0.8824 | | 0.1377 | 7.0 | 2520 | 0.4858 | 0.8834 | | 0.1067 | 8.0 | 2880 | 0.4924 | 0.8864 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1