File size: 18,180 Bytes
bf1cc74 a1a2de3 bf1cc74 a1a2de3 bf1cc74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: chickens-60-epoch-1000-images-aug
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chickens-60-epoch-1000-images-aug
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2851
- Map: 0.8003
- Map 50: 0.9645
- Map 75: 0.9196
- Map Small: 0.2246
- Map Medium: 0.7999
- Map Large: 0.8772
- Mar 1: 0.3086
- Mar 10: 0.8346
- Mar 100: 0.8384
- Mar Small: 0.3614
- Mar Medium: 0.8496
- Mar Large: 0.918
- Map Chicken: 0.8072
- Mar 100 Chicken: 0.8413
- Map Duck: 0.7689
- Mar 100 Duck: 0.799
- Map Plant: 0.8248
- Mar 100 Plant: 0.8749
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 60
### Training results
| Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Chicken | Mar 100 Chicken | Map Duck | Mar 100 Duck | Map Plant | Mar 100 Plant |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:-----------:|:---------------:|:--------:|:------------:|:---------:|:-------------:|
| 1.4811 | 1.0 | 500 | 1.3713 | 0.0772 | 0.1135 | 0.0875 | 0.004 | 0.0389 | 0.3534 | 0.0527 | 0.1857 | 0.2513 | 0.0875 | 0.2276 | 0.7937 | 0.0069 | 0.0062 | 0.0 | 0.0 | 0.2247 | 0.7476 |
| 1.093 | 2.0 | 1000 | 1.1411 | 0.1941 | 0.2637 | 0.221 | 0.0042 | 0.134 | 0.6715 | 0.0688 | 0.2331 | 0.2586 | 0.1167 | 0.23 | 0.8259 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5822 | 0.7758 |
| 1.06 | 3.0 | 1500 | 1.5299 | 0.1865 | 0.2571 | 0.2063 | 0.0172 | 0.1497 | 0.6155 | 0.0695 | 0.2154 | 0.2187 | 0.0583 | 0.199 | 0.6971 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5595 | 0.6562 |
| 0.866 | 4.0 | 2000 | 1.0132 | 0.2298 | 0.307 | 0.2534 | 0.0251 | 0.1936 | 0.7269 | 0.0897 | 0.2671 | 0.2739 | 0.0688 | 0.2449 | 0.8172 | 0.0329 | 0.0613 | 0.0 | 0.0 | 0.6564 | 0.7602 |
| 0.8301 | 5.0 | 2500 | 0.9037 | 0.2895 | 0.3972 | 0.3375 | 0.0486 | 0.25 | 0.7397 | 0.1158 | 0.3495 | 0.3568 | 0.1063 | 0.3238 | 0.8305 | 0.2025 | 0.3062 | 0.0 | 0.0 | 0.6662 | 0.7643 |
| 0.8386 | 6.0 | 3000 | 0.9659 | 0.3229 | 0.4625 | 0.3953 | 0.012 | 0.2944 | 0.7146 | 0.1161 | 0.3938 | 0.3977 | 0.0333 | 0.3785 | 0.7837 | 0.3161 | 0.4693 | 0.0 | 0.0 | 0.6527 | 0.7236 |
| 0.9838 | 7.0 | 3500 | 0.7706 | 0.3831 | 0.5318 | 0.4649 | 0.0314 | 0.3525 | 0.7573 | 0.1347 | 0.4783 | 0.4829 | 0.0854 | 0.4636 | 0.8234 | 0.4609 | 0.6889 | 0.0 | 0.0 | 0.6886 | 0.7599 |
| 0.8051 | 8.0 | 4000 | 0.7424 | 0.3909 | 0.5361 | 0.4744 | 0.0298 | 0.362 | 0.7506 | 0.1396 | 0.489 | 0.4921 | 0.1063 | 0.4762 | 0.8222 | 0.4864 | 0.712 | 0.0 | 0.0 | 0.6864 | 0.7643 |
| 0.7114 | 9.0 | 4500 | 0.6860 | 0.425 | 0.5595 | 0.5062 | 0.0656 | 0.4023 | 0.7822 | 0.1429 | 0.5123 | 0.5168 | 0.1104 | 0.5014 | 0.849 | 0.5552 | 0.7609 | 0.0 | 0.0 | 0.7197 | 0.7896 |
| 0.8088 | 10.0 | 5000 | 0.6922 | 0.4107 | 0.5706 | 0.5008 | 0.0425 | 0.3953 | 0.7653 | 0.1375 | 0.4929 | 0.4981 | 0.1333 | 0.4833 | 0.8272 | 0.527 | 0.7218 | 0.0 | 0.0 | 0.705 | 0.7726 |
| 0.7049 | 11.0 | 5500 | 0.6989 | 0.4204 | 0.5653 | 0.5121 | 0.0859 | 0.4022 | 0.7752 | 0.1439 | 0.4952 | 0.499 | 0.1458 | 0.4863 | 0.8293 | 0.5406 | 0.7182 | 0.0 | 0.0 | 0.7205 | 0.7787 |
| 0.7244 | 12.0 | 6000 | 0.6311 | 0.4276 | 0.584 | 0.5016 | 0.0749 | 0.4104 | 0.7945 | 0.1445 | 0.4989 | 0.5035 | 0.1542 | 0.4876 | 0.8515 | 0.5447 | 0.7133 | 0.0 | 0.0 | 0.7382 | 0.7971 |
| 0.683 | 13.0 | 6500 | 0.6244 | 0.4371 | 0.5962 | 0.5288 | 0.0877 | 0.4149 | 0.7935 | 0.1447 | 0.5002 | 0.5031 | 0.1312 | 0.486 | 0.8427 | 0.5784 | 0.7244 | 0.0 | 0.0 | 0.7329 | 0.7847 |
| 0.6541 | 14.0 | 7000 | 0.5543 | 0.4719 | 0.6191 | 0.5555 | 0.0712 | 0.4525 | 0.8231 | 0.1494 | 0.5195 | 0.5249 | 0.1896 | 0.5025 | 0.8715 | 0.6567 | 0.7644 | 0.0 | 0.0 | 0.759 | 0.8104 |
| 0.6219 | 15.0 | 7500 | 0.5368 | 0.4754 | 0.6197 | 0.5553 | 0.0764 | 0.4584 | 0.825 | 0.1528 | 0.5216 | 0.5265 | 0.1688 | 0.5038 | 0.8711 | 0.6691 | 0.7724 | 0.0 | 0.0 | 0.7571 | 0.8072 |
| 0.5842 | 16.0 | 8000 | 0.5325 | 0.4778 | 0.6269 | 0.5668 | 0.1147 | 0.4558 | 0.8015 | 0.1501 | 0.5178 | 0.5218 | 0.1604 | 0.5071 | 0.8556 | 0.6922 | 0.7636 | 0.0 | 0.0 | 0.7412 | 0.8017 |
| 0.5704 | 17.0 | 8500 | 0.5437 | 0.5192 | 0.6982 | 0.6149 | 0.0616 | 0.5014 | 0.8084 | 0.1798 | 0.558 | 0.5618 | 0.1521 | 0.5445 | 0.8644 | 0.6772 | 0.7449 | 0.1347 | 0.1412 | 0.7456 | 0.7994 |
| 0.5683 | 18.0 | 9000 | 0.5068 | 0.6324 | 0.8451 | 0.7659 | 0.0963 | 0.6253 | 0.8208 | 0.225 | 0.6739 | 0.6793 | 0.175 | 0.6808 | 0.8628 | 0.6996 | 0.7573 | 0.4404 | 0.4753 | 0.7573 | 0.8052 |
| 0.6402 | 19.0 | 9500 | 0.4682 | 0.6741 | 0.8823 | 0.8298 | 0.1357 | 0.6748 | 0.8274 | 0.2516 | 0.7135 | 0.7185 | 0.2104 | 0.7246 | 0.8728 | 0.7195 | 0.7698 | 0.5335 | 0.567 | 0.7691 | 0.8187 |
| 0.5664 | 20.0 | 10000 | 0.4793 | 0.6841 | 0.9057 | 0.8277 | 0.135 | 0.6878 | 0.8164 | 0.2585 | 0.7299 | 0.7341 | 0.2396 | 0.7463 | 0.8649 | 0.7325 | 0.7853 | 0.5558 | 0.5979 | 0.7638 | 0.819 |
| 0.4411 | 21.0 | 10500 | 0.4448 | 0.7042 | 0.932 | 0.8592 | 0.1098 | 0.7039 | 0.8287 | 0.2789 | 0.7527 | 0.7568 | 0.1718 | 0.7703 | 0.8749 | 0.7128 | 0.7658 | 0.6338 | 0.6845 | 0.766 | 0.8202 |
| 0.6106 | 22.0 | 11000 | 0.4142 | 0.7307 | 0.9307 | 0.8797 | 0.0773 | 0.735 | 0.8381 | 0.2841 | 0.7736 | 0.7783 | 0.2062 | 0.7946 | 0.8866 | 0.7379 | 0.7853 | 0.6726 | 0.7134 | 0.7817 | 0.836 |
| 0.5243 | 23.0 | 11500 | 0.4353 | 0.7183 | 0.9406 | 0.86 | 0.0901 | 0.7236 | 0.8416 | 0.2827 | 0.7615 | 0.767 | 0.1973 | 0.779 | 0.8879 | 0.7338 | 0.7827 | 0.6385 | 0.6845 | 0.7827 | 0.8337 |
| 0.5184 | 24.0 | 12000 | 0.4077 | 0.7097 | 0.9464 | 0.854 | 0.1197 | 0.7156 | 0.8335 | 0.2741 | 0.757 | 0.7607 | 0.2553 | 0.7738 | 0.8828 | 0.7126 | 0.7667 | 0.6338 | 0.6784 | 0.7828 | 0.8372 |
| 0.4849 | 25.0 | 12500 | 0.4043 | 0.7096 | 0.949 | 0.8366 | 0.1234 | 0.7084 | 0.8412 | 0.2739 | 0.7538 | 0.7611 | 0.258 | 0.7703 | 0.8891 | 0.7483 | 0.7902 | 0.596 | 0.6546 | 0.7843 | 0.8383 |
| 0.5022 | 26.0 | 13000 | 0.3884 | 0.7394 | 0.9528 | 0.8847 | 0.1472 | 0.7337 | 0.8473 | 0.2918 | 0.7816 | 0.7876 | 0.2549 | 0.7888 | 0.8971 | 0.7466 | 0.7871 | 0.688 | 0.7402 | 0.7838 | 0.8354 |
| 0.521 | 27.0 | 13500 | 0.4197 | 0.7177 | 0.9434 | 0.8715 | 0.132 | 0.7168 | 0.8353 | 0.2879 | 0.7639 | 0.7697 | 0.2623 | 0.7777 | 0.8799 | 0.7073 | 0.7649 | 0.6685 | 0.7165 | 0.7771 | 0.8277 |
| 0.5433 | 28.0 | 14000 | 0.3886 | 0.7454 | 0.9508 | 0.8823 | 0.2083 | 0.7406 | 0.8448 | 0.292 | 0.7833 | 0.789 | 0.3064 | 0.7952 | 0.8845 | 0.7573 | 0.8004 | 0.6941 | 0.733 | 0.785 | 0.8334 |
| 0.3889 | 29.0 | 14500 | 0.3713 | 0.7492 | 0.9553 | 0.8998 | 0.2224 | 0.7492 | 0.8468 | 0.2891 | 0.7873 | 0.7936 | 0.3112 | 0.8026 | 0.8921 | 0.7677 | 0.8053 | 0.6849 | 0.7299 | 0.7951 | 0.8455 |
| 0.5103 | 30.0 | 15000 | 0.3556 | 0.7584 | 0.9576 | 0.9014 | 0.219 | 0.7509 | 0.8517 | 0.2939 | 0.7954 | 0.8015 | 0.3089 | 0.8078 | 0.8979 | 0.7654 | 0.8022 | 0.7165 | 0.7557 | 0.7934 | 0.8467 |
| 0.4458 | 31.0 | 15500 | 0.3681 | 0.7355 | 0.9518 | 0.8831 | 0.1416 | 0.7311 | 0.8569 | 0.292 | 0.7773 | 0.7814 | 0.2358 | 0.7892 | 0.9008 | 0.734 | 0.7742 | 0.6771 | 0.7247 | 0.7955 | 0.8452 |
| 0.4369 | 32.0 | 16000 | 0.3523 | 0.7495 | 0.9499 | 0.8877 | 0.142 | 0.7447 | 0.8514 | 0.2935 | 0.7877 | 0.7923 | 0.2589 | 0.8026 | 0.895 | 0.765 | 0.8027 | 0.6903 | 0.7309 | 0.7932 | 0.8432 |
| 0.447 | 33.0 | 16500 | 0.3665 | 0.7448 | 0.954 | 0.8912 | 0.1577 | 0.7412 | 0.8505 | 0.2922 | 0.7844 | 0.7879 | 0.2742 | 0.8005 | 0.8929 | 0.7453 | 0.7813 | 0.6933 | 0.7361 | 0.796 | 0.8464 |
| 0.4692 | 34.0 | 17000 | 0.3455 | 0.7589 | 0.954 | 0.899 | 0.1729 | 0.7459 | 0.863 | 0.2949 | 0.798 | 0.8038 | 0.3123 | 0.8068 | 0.9033 | 0.7709 | 0.8093 | 0.7058 | 0.7546 | 0.7999 | 0.8476 |
| 0.4272 | 35.0 | 17500 | 0.3381 | 0.767 | 0.9568 | 0.903 | 0.1734 | 0.7623 | 0.852 | 0.2948 | 0.802 | 0.8061 | 0.2907 | 0.8136 | 0.8962 | 0.7842 | 0.8204 | 0.7246 | 0.7546 | 0.7922 | 0.8432 |
| 0.4021 | 36.0 | 18000 | 0.3323 | 0.7686 | 0.9551 | 0.8938 | 0.1892 | 0.7621 | 0.8616 | 0.2969 | 0.8025 | 0.8067 | 0.3049 | 0.8122 | 0.9025 | 0.7776 | 0.8133 | 0.7245 | 0.7577 | 0.8038 | 0.849 |
| 0.4582 | 37.0 | 18500 | 0.3263 | 0.7732 | 0.9547 | 0.9023 | 0.1477 | 0.7748 | 0.8742 | 0.3015 | 0.8092 | 0.8132 | 0.2634 | 0.8251 | 0.9163 | 0.7729 | 0.812 | 0.7298 | 0.7619 | 0.817 | 0.8657 |
| 0.3992 | 38.0 | 19000 | 0.3207 | 0.7799 | 0.956 | 0.9064 | 0.1767 | 0.7823 | 0.873 | 0.3014 | 0.8168 | 0.8209 | 0.3028 | 0.8312 | 0.9172 | 0.7833 | 0.8218 | 0.7384 | 0.7732 | 0.818 | 0.8677 |
| 0.4286 | 39.0 | 19500 | 0.3194 | 0.7717 | 0.9567 | 0.8986 | 0.1626 | 0.7677 | 0.8779 | 0.3033 | 0.8101 | 0.8139 | 0.2835 | 0.82 | 0.918 | 0.7752 | 0.8204 | 0.7223 | 0.7598 | 0.8175 | 0.8614 |
| 0.4488 | 40.0 | 20000 | 0.3184 | 0.7718 | 0.9566 | 0.9047 | 0.1921 | 0.7702 | 0.8809 | 0.2999 | 0.8092 | 0.8141 | 0.3002 | 0.8238 | 0.9192 | 0.7776 | 0.8187 | 0.7156 | 0.7546 | 0.8223 | 0.8689 |
| 0.3763 | 41.0 | 20500 | 0.3055 | 0.7876 | 0.956 | 0.9186 | 0.1841 | 0.7824 | 0.8844 | 0.3033 | 0.8207 | 0.8254 | 0.3061 | 0.8339 | 0.9234 | 0.7973 | 0.8356 | 0.7394 | 0.7691 | 0.8262 | 0.8715 |
| 0.5658 | 42.0 | 21000 | 0.3014 | 0.791 | 0.9594 | 0.9167 | 0.2095 | 0.7911 | 0.8786 | 0.3032 | 0.8244 | 0.8299 | 0.3403 | 0.8403 | 0.9213 | 0.805 | 0.8404 | 0.7421 | 0.7742 | 0.8259 | 0.8749 |
| 0.4322 | 43.0 | 21500 | 0.2974 | 0.7974 | 0.9595 | 0.9169 | 0.1879 | 0.7927 | 0.8951 | 0.3078 | 0.8296 | 0.834 | 0.3085 | 0.8411 | 0.931 | 0.8005 | 0.8369 | 0.7586 | 0.7876 | 0.8331 | 0.8775 |
| 0.7057 | 44.0 | 22000 | 0.3092 | 0.7822 | 0.9563 | 0.9171 | 0.1985 | 0.7813 | 0.8688 | 0.3003 | 0.8165 | 0.821 | 0.3663 | 0.8292 | 0.9117 | 0.7941 | 0.8307 | 0.7348 | 0.766 | 0.8177 | 0.8663 |
| 0.4096 | 45.0 | 22500 | 0.2991 | 0.7899 | 0.9614 | 0.9121 | 0.2212 | 0.7852 | 0.8747 | 0.3031 | 0.8233 | 0.8286 | 0.3578 | 0.8351 | 0.9142 | 0.8016 | 0.8413 | 0.7502 | 0.7794 | 0.8179 | 0.8651 |
| 0.4854 | 46.0 | 23000 | 0.3003 | 0.7815 | 0.9595 | 0.9068 | 0.2042 | 0.7791 | 0.8747 | 0.3016 | 0.8164 | 0.8197 | 0.3258 | 0.8255 | 0.9163 | 0.7816 | 0.8231 | 0.746 | 0.7722 | 0.8169 | 0.8637 |
| 0.4257 | 47.0 | 23500 | 0.2951 | 0.792 | 0.9625 | 0.9172 | 0.2075 | 0.7855 | 0.8802 | 0.3067 | 0.8262 | 0.8309 | 0.3468 | 0.836 | 0.9197 | 0.7961 | 0.8338 | 0.7572 | 0.7907 | 0.8226 | 0.8683 |
| 0.4033 | 48.0 | 24000 | 0.2883 | 0.7988 | 0.9632 | 0.9194 | 0.2266 | 0.7984 | 0.8765 | 0.3082 | 0.8343 | 0.8382 | 0.3616 | 0.8477 | 0.9176 | 0.8069 | 0.8458 | 0.7649 | 0.7969 | 0.8246 | 0.872 |
| 0.4932 | 49.0 | 24500 | 0.3022 | 0.7844 | 0.9617 | 0.9101 | 0.2231 | 0.7765 | 0.8762 | 0.3007 | 0.8216 | 0.8252 | 0.3396 | 0.8308 | 0.9176 | 0.7882 | 0.8293 | 0.7472 | 0.7794 | 0.8177 | 0.8669 |
| 0.3758 | 50.0 | 25000 | 0.2959 | 0.7921 | 0.9609 | 0.9203 | 0.2432 | 0.7853 | 0.8779 | 0.3066 | 0.8273 | 0.8314 | 0.3655 | 0.8365 | 0.9197 | 0.7932 | 0.832 | 0.7619 | 0.7918 | 0.8212 | 0.8703 |
| 0.4397 | 51.0 | 25500 | 0.2871 | 0.7983 | 0.9609 | 0.9128 | 0.2145 | 0.7966 | 0.8832 | 0.3086 | 0.833 | 0.8374 | 0.3409 | 0.8478 | 0.9251 | 0.802 | 0.8369 | 0.7648 | 0.7969 | 0.828 | 0.8784 |
| 0.3917 | 52.0 | 26000 | 0.2907 | 0.7955 | 0.9645 | 0.9161 | 0.2316 | 0.7911 | 0.8796 | 0.308 | 0.8314 | 0.8352 | 0.375 | 0.8428 | 0.9192 | 0.7975 | 0.8356 | 0.7654 | 0.7969 | 0.8234 | 0.8732 |
| 0.3362 | 53.0 | 26500 | 0.2885 | 0.7989 | 0.9644 | 0.92 | 0.2324 | 0.7958 | 0.8789 | 0.3075 | 0.8338 | 0.8379 | 0.3769 | 0.8465 | 0.9201 | 0.8012 | 0.8382 | 0.7703 | 0.8 | 0.8253 | 0.8755 |
| 0.4004 | 54.0 | 27000 | 0.2869 | 0.7973 | 0.9644 | 0.9201 | 0.228 | 0.7957 | 0.8813 | 0.3069 | 0.8328 | 0.8368 | 0.3822 | 0.8456 | 0.9218 | 0.801 | 0.8373 | 0.7636 | 0.7948 | 0.8273 | 0.8781 |
| 0.406 | 55.0 | 27500 | 0.2871 | 0.8004 | 0.9645 | 0.9194 | 0.2283 | 0.7986 | 0.8788 | 0.3084 | 0.8343 | 0.8384 | 0.3822 | 0.8476 | 0.9205 | 0.8069 | 0.8404 | 0.7679 | 0.7979 | 0.8265 | 0.8769 |
| 0.3876 | 56.0 | 28000 | 0.2882 | 0.7985 | 0.9641 | 0.9197 | 0.2257 | 0.7974 | 0.8772 | 0.3084 | 0.834 | 0.838 | 0.3676 | 0.8474 | 0.918 | 0.8072 | 0.8436 | 0.7646 | 0.7969 | 0.8237 | 0.8735 |
| 0.3939 | 57.0 | 28500 | 0.2845 | 0.8024 | 0.9645 | 0.9195 | 0.2291 | 0.8014 | 0.8782 | 0.3093 | 0.8367 | 0.8405 | 0.3697 | 0.8511 | 0.9197 | 0.8102 | 0.8431 | 0.7709 | 0.8021 | 0.8262 | 0.8764 |
| 0.4218 | 58.0 | 29000 | 0.2852 | 0.8 | 0.9646 | 0.9196 | 0.2254 | 0.7993 | 0.8774 | 0.3085 | 0.8346 | 0.8384 | 0.3634 | 0.8488 | 0.9188 | 0.8067 | 0.8413 | 0.7689 | 0.799 | 0.8245 | 0.8749 |
| 0.4046 | 59.0 | 29500 | 0.2851 | 0.8008 | 0.9645 | 0.9196 | 0.2283 | 0.8002 | 0.878 | 0.3087 | 0.835 | 0.8388 | 0.3655 | 0.8497 | 0.9188 | 0.8079 | 0.8418 | 0.7689 | 0.799 | 0.8256 | 0.8758 |
| 0.4504 | 60.0 | 30000 | 0.2851 | 0.8003 | 0.9645 | 0.9196 | 0.2246 | 0.7999 | 0.8772 | 0.3086 | 0.8346 | 0.8384 | 0.3614 | 0.8496 | 0.918 | 0.8072 | 0.8413 | 0.7689 | 0.799 | 0.8248 | 0.8749 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 2.19.2
- Tokenizers 0.20.1
|