johnowhitaker commited on
Commit
d61aae5
1 Parent(s): 9e38d8f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ tags:
4
+ - stable-diffusion
5
+ - stable-diffusion-diffusers
6
+ - text-to-image
7
+ - multires_noise
8
+ inference: true
9
+ ---
10
+
11
+
12
+ A model trained with Pyramid Noise - see https://wandb.ai/johnowhitaker/multires_noise/reports/Multi-Resolution-Noise-for-Diffusion-Model-Training--VmlldzozNjYyOTU2 for details
13
+
14
+ ```python
15
+ from torch import nn
16
+ import random
17
+
18
+ def pyramid_noise_like(x, discount=0.8):
19
+ b, c, w, h = x.shape
20
+ u = nn.Upsample(size=(w, h), mode='bilinear')
21
+ noise = torch.randn_like(x)
22
+ for i in range(6):
23
+ r = random.random()*2+2 # Rather than always going 2x,
24
+ w, h = max(1, int(w/(r**i))), max(1, int(h/(r**i)))
25
+ noise += u(torch.randn(b, c, w, h).to(x)) * discount**i
26
+ if w==1 or h==1: break
27
+ return noise / noise.std() # Scale back to unit variance
28
+ ```
29
+
30
+ To use the mode for inference, just load it like a normal stable diffusion pipeline:
31
+
32
+ ```python
33
+ from diffusers import StableDiffusionPipeline
34
+
35
+ model_path = "johnowhitaker/pyramid_noise_test_600steps_08discount"
36
+ pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
37
+ pipe.to("cuda")
38
+
39
+ image = pipe(prompt="A black image").images[0]
40
+ image
41
+ ```