File size: 1,851 Bytes
9606169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: jonas-luehrs/bert-base-cased-MLM-chemistry
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: bert-base-cased-MLM-chemistry-textCLS-PETROCHEMICAL
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-cased-MLM-chemistry-textCLS-PETROCHEMICAL

This model is a fine-tuned version of [jonas-luehrs/bert-base-cased-MLM-chemistry](https://huggingface.co/jonas-luehrs/bert-base-cased-MLM-chemistry) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5312
- F1: 0.7952
- Precision: 0.7860
- Recall: 0.8108
- Accuracy: 0.8108

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 1.1794        | 1.0   | 125  | 0.6850          | 0.7443 | 0.7550    | 0.7658 | 0.7658   |
| 0.605         | 2.0   | 250  | 0.5785          | 0.7726 | 0.7675    | 0.7883 | 0.7883   |
| 0.4452        | 3.0   | 375  | 0.5312          | 0.7952 | 0.7860    | 0.8108 | 0.8108   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3