--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-tokenCLS-CATALYST results: [] --- # bert-base-cased-tokenCLS-CATALYST This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0783 - Precision: 0.6142 - Recall: 0.8261 - F1: 0.7046 - Accuracy: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1022 | 1.0 | 1114 | 0.0938 | 0.5462 | 0.7536 | 0.6334 | 0.9704 | | 0.0635 | 2.0 | 2228 | 0.1003 | 0.6086 | 0.8609 | 0.7131 | 0.9758 | | 0.0504 | 3.0 | 3342 | 0.0783 | 0.6142 | 0.8261 | 0.7046 | 0.9749 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3