Feature | Description |
---|---|
Name | en_furniture_ner |
Version | 0.0.0 |
spaCy | >=3.5.3,<3.6.0 |
Default Pipeline | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (114 labels for 3 components)
Component | Labels |
---|---|
tagger |
$ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , _SP , ```` |
parser |
ROOT , acl , acomp , advcl , advmod , agent , amod , appos , attr , aux , auxpass , case , cc , ccomp , compound , conj , csubj , csubjpass , dative , dep , det , dobj , expl , intj , mark , meta , neg , nmod , npadvmod , nsubj , nsubjpass , nummod , oprd , parataxis , pcomp , pobj , poss , preconj , predet , prep , prt , punct , quantmod , relcl , xcomp |
ner |
CARDINAL , DATE , EVENT , FAC , FURNITURE , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
Accuracy
Type | Score |
---|---|
TAG_ACC |
0.00 |
DEP_UAS |
0.00 |
DEP_LAS |
0.00 |
DEP_LAS_PER_TYPE |
0.00 |
SENTS_P |
0.00 |
SENTS_R |
0.00 |
SENTS_F |
0.00 |
LEMMA_ACC |
0.00 |
ENTS_F |
90.48 |
ENTS_P |
90.48 |
ENTS_R |
90.48 |
TOK2VEC_LOSS |
0.00 |
NER_LOSS |
5914.38 |
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.905
- NER Recallself-reported0.905
- NER F Scoreself-reported0.905
- TAG (XPOS) Accuracyself-reported0.000
- Lemma Accuracyself-reported0.000
- Unlabeled Attachment Score (UAS)self-reported0.000
- Labeled Attachment Score (LAS)self-reported0.000
- Sentences F-Scoreself-reported0.000