File size: 3,168 Bytes
4f35d33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
metrics:
- rouge
- wer
model-index:
- name: bart_extractive_1024_1000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_extractive_1024_1000
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8802
- Rouge1: 0.7215
- Rouge2: 0.4773
- Rougel: 0.668
- Rougelsum: 0.668
- Wer: 0.4137
- Bleurt: -0.027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Wer | Bleurt |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:-------:|
| No log | 0.13 | 250 | 1.1362 | 0.6713 | 0.4064 | 0.6113 | 0.6111 | 0.4774 | -0.1118 |
| 2.0454 | 0.27 | 500 | 1.0337 | 0.6869 | 0.4301 | 0.6289 | 0.6288 | 0.4555 | -0.1734 |
| 2.0454 | 0.4 | 750 | 1.0002 | 0.7017 | 0.4465 | 0.6435 | 0.6434 | 0.4467 | -0.357 |
| 1.0987 | 0.53 | 1000 | 0.9747 | 0.7008 | 0.4469 | 0.6423 | 0.6422 | 0.442 | -0.0679 |
| 1.0987 | 0.66 | 1250 | 0.9589 | 0.7092 | 0.456 | 0.6521 | 0.652 | 0.4363 | 0.2669 |
| 1.0418 | 0.8 | 1500 | 0.9551 | 0.704 | 0.4538 | 0.6486 | 0.6485 | 0.4343 | -0.1447 |
| 1.0418 | 0.93 | 1750 | 0.9316 | 0.7096 | 0.4605 | 0.6546 | 0.6544 | 0.4285 | -0.0465 |
| 1.0031 | 1.06 | 2000 | 0.9150 | 0.7129 | 0.4653 | 0.6584 | 0.6583 | 0.4255 | -0.1069 |
| 1.0031 | 1.2 | 2250 | 0.9094 | 0.7119 | 0.4658 | 0.6577 | 0.6576 | 0.4234 | -0.4062 |
| 0.9052 | 1.33 | 2500 | 0.9101 | 0.721 | 0.4736 | 0.6665 | 0.6664 | 0.4206 | 0.2201 |
| 0.9052 | 1.46 | 2750 | 0.8983 | 0.7161 | 0.471 | 0.6619 | 0.6618 | 0.4184 | 0.0117 |
| 0.9045 | 1.6 | 3000 | 0.8917 | 0.7216 | 0.4762 | 0.6675 | 0.6674 | 0.4169 | 0.2346 |
| 0.9045 | 1.73 | 3250 | 0.8906 | 0.7167 | 0.474 | 0.6643 | 0.6642 | 0.4153 | -0.0679 |
| 0.8767 | 1.86 | 3500 | 0.8797 | 0.7232 | 0.4787 | 0.6698 | 0.6697 | 0.4141 | 0.2346 |
| 0.8767 | 1.99 | 3750 | 0.8802 | 0.7215 | 0.4773 | 0.668 | 0.668 | 0.4137 | -0.027 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|