jordyvl commited on
Commit
02d5f70
1 Parent(s): 268d58e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - harem
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-portuguese-cased_harem-sm-first-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: harem
20
+ type: harem
21
+ args: selective
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.7455830388692579
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.8053435114503816
29
+ - name: F1
30
+ type: f1
31
+ value: 0.7743119266055045
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.964875491480996
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # bert-base-portuguese-cased_harem-sm-first-ner
41
+
42
+ This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.1952
45
+ - Precision: 0.7456
46
+ - Recall: 0.8053
47
+ - F1: 0.7743
48
+ - Accuracy: 0.9649
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 2
69
+ - eval_batch_size: 2
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - lr_scheduler_warmup_ratio: 0.1
74
+ - num_epochs: 3
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.1049 | 1.0 | 2517 | 0.1955 | 0.6601 | 0.7710 | 0.7113 | 0.9499 |
81
+ | 0.0622 | 2.0 | 5034 | 0.2097 | 0.7314 | 0.7901 | 0.7596 | 0.9554 |
82
+ | 0.0318 | 3.0 | 7551 | 0.1952 | 0.7456 | 0.8053 | 0.7743 | 0.9649 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.18.0
88
+ - Pytorch 1.10.2+cu102
89
+ - Datasets 2.2.2
90
+ - Tokenizers 0.12.1