Edit model card

dit-base_tobacco-small_tobacco3482_simkd

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6962
  • Accuracy: 0.85
  • Brier Loss: 0.2700
  • Nll: 0.9667
  • F1 Micro: 0.85
  • F1 Macro: 0.8241
  • Ece: 0.2479
  • Aurc: 0.0379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 50 1.0013 0.18 0.8965 4.5407 0.18 0.1379 0.2160 0.6680
No log 2.0 100 0.9916 0.3 0.8871 3.1090 0.3 0.1526 0.3057 0.4735
No log 3.0 150 0.9644 0.51 0.8433 2.4502 0.51 0.3257 0.4499 0.2544
No log 4.0 200 0.9207 0.575 0.7585 2.1964 0.575 0.3958 0.4563 0.2193
No log 5.0 250 0.8726 0.635 0.6620 2.3923 0.635 0.5105 0.4321 0.1730
No log 6.0 300 0.8303 0.665 0.5604 1.4922 0.665 0.5869 0.3717 0.1305
No log 7.0 350 0.7994 0.745 0.4490 1.3772 0.745 0.6541 0.3557 0.0853
No log 8.0 400 0.7822 0.79 0.4124 1.2076 0.79 0.7109 0.3035 0.0873
No log 9.0 450 0.7808 0.78 0.3955 1.5529 0.78 0.7041 0.3123 0.0763
0.8704 10.0 500 0.7923 0.695 0.4296 1.7171 0.695 0.6150 0.3012 0.1039
0.8704 11.0 550 0.7848 0.745 0.4327 1.6327 0.745 0.6972 0.2800 0.1321
0.8704 12.0 600 0.7600 0.825 0.3579 1.2569 0.825 0.7621 0.3015 0.0624
0.8704 13.0 650 0.7570 0.79 0.3554 1.4638 0.79 0.7706 0.2964 0.0621
0.8704 14.0 700 0.7504 0.81 0.3434 1.5597 0.81 0.7714 0.2930 0.0589
0.8704 15.0 750 0.7481 0.8 0.3439 1.3827 0.8000 0.7641 0.2805 0.0675
0.8704 16.0 800 0.7358 0.81 0.3357 1.4522 0.81 0.7889 0.3077 0.0610
0.8704 17.0 850 0.7294 0.82 0.3179 1.0458 0.82 0.7820 0.2909 0.0564
0.8704 18.0 900 0.7229 0.815 0.3092 1.2562 0.815 0.7862 0.2719 0.0496
0.8704 19.0 950 0.7186 0.825 0.3069 1.0425 0.825 0.7977 0.2824 0.0558
0.6968 20.0 1000 0.7156 0.83 0.3031 0.9897 0.83 0.8039 0.2660 0.0490
0.6968 21.0 1050 0.7135 0.82 0.3014 1.0562 0.82 0.7887 0.2745 0.0462
0.6968 22.0 1100 0.7116 0.835 0.2997 0.9822 0.835 0.8102 0.2817 0.0452
0.6968 23.0 1150 0.7114 0.82 0.3047 0.9197 0.82 0.7937 0.2669 0.0484
0.6968 24.0 1200 0.7111 0.8 0.3032 0.9744 0.8000 0.7690 0.2624 0.0504
0.6968 25.0 1250 0.7076 0.805 0.3025 0.9884 0.805 0.7677 0.2538 0.0478
0.6968 26.0 1300 0.7074 0.82 0.3037 0.9954 0.82 0.7877 0.2592 0.0496
0.6968 27.0 1350 0.7053 0.825 0.2998 0.9712 0.825 0.7885 0.2628 0.0454
0.6968 28.0 1400 0.7046 0.82 0.2936 0.9780 0.82 0.7886 0.2573 0.0438
0.6968 29.0 1450 0.7068 0.82 0.3000 0.9943 0.82 0.7895 0.2382 0.0447
0.6551 30.0 1500 0.7045 0.83 0.2881 0.9107 0.83 0.8010 0.2363 0.0439
0.6551 31.0 1550 0.7033 0.825 0.2936 0.9794 0.825 0.7858 0.2556 0.0433
0.6551 32.0 1600 0.7014 0.82 0.2890 0.9799 0.82 0.7895 0.2495 0.0418
0.6551 33.0 1650 0.7020 0.815 0.2921 0.9658 0.815 0.7820 0.2556 0.0449
0.6551 34.0 1700 0.7012 0.835 0.2885 1.0419 0.835 0.8042 0.2581 0.0417
0.6551 35.0 1750 0.7013 0.835 0.2902 0.9773 0.835 0.8035 0.2522 0.0435
0.6551 36.0 1800 0.7016 0.825 0.2884 0.9815 0.825 0.7851 0.2518 0.0432
0.6551 37.0 1850 0.7007 0.835 0.2888 0.9724 0.835 0.8133 0.2486 0.0438
0.6551 38.0 1900 0.6984 0.825 0.2847 0.9650 0.825 0.7897 0.2487 0.0415
0.6551 39.0 1950 0.7001 0.84 0.2843 1.0535 0.8400 0.8104 0.2566 0.0418
0.6381 40.0 2000 0.6990 0.825 0.2843 0.9673 0.825 0.7963 0.2396 0.0429
0.6381 41.0 2050 0.7002 0.84 0.2875 1.0599 0.8400 0.8098 0.2618 0.0413
0.6381 42.0 2100 0.6967 0.83 0.2791 0.9676 0.83 0.7929 0.2441 0.0403
0.6381 43.0 2150 0.6978 0.835 0.2802 0.9771 0.835 0.8071 0.2526 0.0416
0.6381 44.0 2200 0.6969 0.84 0.2795 0.9478 0.8400 0.8164 0.2464 0.0418
0.6381 45.0 2250 0.6971 0.835 0.2760 0.9712 0.835 0.8030 0.2333 0.0392
0.6381 46.0 2300 0.6985 0.84 0.2813 0.9692 0.8400 0.8072 0.2403 0.0404
0.6381 47.0 2350 0.6976 0.835 0.2796 1.0420 0.835 0.8042 0.2374 0.0406
0.6381 48.0 2400 0.6965 0.85 0.2778 0.9753 0.85 0.8205 0.2653 0.0403
0.6381 49.0 2450 0.6969 0.825 0.2747 0.9606 0.825 0.7871 0.2478 0.0394
0.6274 50.0 2500 0.6954 0.835 0.2746 0.9572 0.835 0.8070 0.2395 0.0406
0.6274 51.0 2550 0.6972 0.835 0.2755 1.0383 0.835 0.8070 0.2484 0.0391
0.6274 52.0 2600 0.6955 0.83 0.2752 0.9699 0.83 0.7998 0.2562 0.0406
0.6274 53.0 2650 0.6950 0.835 0.2693 0.9563 0.835 0.8030 0.2300 0.0373
0.6274 54.0 2700 0.6960 0.83 0.2727 0.9646 0.83 0.7977 0.2347 0.0399
0.6274 55.0 2750 0.6946 0.83 0.2711 0.9603 0.83 0.8058 0.2279 0.0384
0.6274 56.0 2800 0.6940 0.835 0.2726 0.9579 0.835 0.8088 0.2478 0.0380
0.6274 57.0 2850 0.6951 0.835 0.2732 0.9594 0.835 0.8090 0.2336 0.0418
0.6274 58.0 2900 0.6936 0.84 0.2684 0.9575 0.8400 0.8079 0.2490 0.0373
0.6274 59.0 2950 0.6949 0.835 0.2701 0.9543 0.835 0.8088 0.2261 0.0389
0.6207 60.0 3000 0.6939 0.84 0.2697 0.9574 0.8400 0.8161 0.2339 0.0378
0.6207 61.0 3050 0.6952 0.84 0.2706 0.9611 0.8400 0.8080 0.2306 0.0379
0.6207 62.0 3100 0.6940 0.835 0.2691 0.9523 0.835 0.8086 0.2451 0.0382
0.6207 63.0 3150 0.6946 0.835 0.2672 0.9627 0.835 0.8088 0.2347 0.0374
0.6207 64.0 3200 0.6949 0.84 0.2713 0.9602 0.8400 0.8139 0.2404 0.0384
0.6207 65.0 3250 0.6944 0.835 0.2662 0.9603 0.835 0.8079 0.2308 0.0377
0.6207 66.0 3300 0.6946 0.835 0.2698 0.9593 0.835 0.8088 0.2352 0.0390
0.6207 67.0 3350 0.6934 0.83 0.2658 0.9558 0.83 0.8060 0.2260 0.0384
0.6207 68.0 3400 0.6944 0.83 0.2689 0.9517 0.83 0.8058 0.2208 0.0399
0.6207 69.0 3450 0.6946 0.835 0.2698 0.9553 0.835 0.8042 0.2331 0.0383
0.6156 70.0 3500 0.6948 0.83 0.2690 0.9549 0.83 0.8058 0.2280 0.0391
0.6156 71.0 3550 0.6936 0.84 0.2676 0.9532 0.8400 0.8122 0.2346 0.0383
0.6156 72.0 3600 0.6946 0.835 0.2667 0.9545 0.835 0.8088 0.2492 0.0379
0.6156 73.0 3650 0.6939 0.84 0.2670 0.9534 0.8400 0.8139 0.2466 0.0377
0.6156 74.0 3700 0.6948 0.835 0.2695 0.9522 0.835 0.8086 0.2312 0.0390
0.6156 75.0 3750 0.6951 0.835 0.2701 0.9622 0.835 0.8111 0.2158 0.0397
0.6156 76.0 3800 0.6949 0.84 0.2682 0.9606 0.8400 0.8139 0.2415 0.0382
0.6156 77.0 3850 0.6950 0.84 0.2684 0.9629 0.8400 0.8118 0.2493 0.0381
0.6156 78.0 3900 0.6946 0.835 0.2685 0.9522 0.835 0.8111 0.2360 0.0390
0.6156 79.0 3950 0.6944 0.84 0.2668 0.9544 0.8400 0.8118 0.2377 0.0372
0.612 80.0 4000 0.6954 0.84 0.2692 0.9579 0.8400 0.8139 0.2321 0.0381
0.612 81.0 4050 0.6956 0.84 0.2701 0.9606 0.8400 0.8139 0.2354 0.0382
0.612 82.0 4100 0.6952 0.835 0.2686 0.9600 0.835 0.8086 0.2540 0.0381
0.612 83.0 4150 0.6955 0.835 0.2689 0.9571 0.835 0.8086 0.2465 0.0383
0.612 84.0 4200 0.6952 0.84 0.2689 0.9583 0.8400 0.8159 0.2308 0.0387
0.612 85.0 4250 0.6956 0.835 0.2702 0.9618 0.835 0.8042 0.2365 0.0386
0.612 86.0 4300 0.6950 0.835 0.2683 0.9572 0.835 0.8086 0.2228 0.0382
0.612 87.0 4350 0.6949 0.84 0.2692 0.9583 0.8400 0.8118 0.2497 0.0381
0.612 88.0 4400 0.6953 0.845 0.2695 0.9617 0.845 0.8209 0.2558 0.0386
0.612 89.0 4450 0.6952 0.845 0.2689 0.9611 0.845 0.8209 0.2251 0.0383
0.6097 90.0 4500 0.6961 0.835 0.2701 0.9645 0.835 0.8042 0.2444 0.0386
0.6097 91.0 4550 0.6954 0.845 0.2689 0.9619 0.845 0.8209 0.2324 0.0383
0.6097 92.0 4600 0.6959 0.845 0.2700 0.9636 0.845 0.8209 0.2277 0.0388
0.6097 93.0 4650 0.6959 0.85 0.2694 0.9654 0.85 0.8241 0.2396 0.0379
0.6097 94.0 4700 0.6960 0.85 0.2696 0.9643 0.85 0.8241 0.2471 0.0379
0.6097 95.0 4750 0.6959 0.85 0.2694 0.9650 0.85 0.8241 0.2233 0.0378
0.6097 96.0 4800 0.6962 0.845 0.2700 0.9666 0.845 0.8144 0.2558 0.0382
0.6097 97.0 4850 0.6962 0.85 0.2699 0.9662 0.85 0.8241 0.2400 0.0381
0.6097 98.0 4900 0.6962 0.85 0.2700 0.9662 0.85 0.8241 0.2396 0.0380
0.6097 99.0 4950 0.6963 0.85 0.2700 0.9667 0.85 0.8241 0.2478 0.0379
0.6083 100.0 5000 0.6962 0.85 0.2700 0.9667 0.85 0.8241 0.2479 0.0379

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Safetensors
Model size
21.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordyvl/dit-base_tobacco-small_tobacco3482_simkd

Finetuned
(13)
this model