File size: 14,064 Bytes
c5c5120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-tiny_tobacco3482_og_simkd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-tiny_tobacco3482_og_simkd

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 318.4368
- Accuracy: 0.805
- Brier Loss: 0.3825
- Nll: 1.1523
- F1 Micro: 0.805
- F1 Macro: 0.7673
- Ece: 0.2987
- Aurc: 0.0702

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 7    | 328.9614        | 0.155    | 0.8984     | 7.4608 | 0.155    | 0.0353   | 0.2035 | 0.8760 |
| No log        | 2.0   | 14   | 328.8199        | 0.235    | 0.8940     | 6.4907 | 0.235    | 0.1148   | 0.2643 | 0.7444 |
| No log        | 3.0   | 21   | 328.4224        | 0.38     | 0.8711     | 2.8184 | 0.38     | 0.3279   | 0.3440 | 0.4817 |
| No log        | 4.0   | 28   | 327.5357        | 0.51     | 0.8072     | 2.0744 | 0.51     | 0.4221   | 0.4111 | 0.3319 |
| No log        | 5.0   | 35   | 326.2037        | 0.53     | 0.6860     | 2.0669 | 0.53     | 0.4313   | 0.3619 | 0.2744 |
| No log        | 6.0   | 42   | 324.8763        | 0.565    | 0.6008     | 1.9437 | 0.565    | 0.4477   | 0.3009 | 0.2469 |
| No log        | 7.0   | 49   | 323.9205        | 0.6      | 0.5390     | 1.7694 | 0.6      | 0.4647   | 0.2365 | 0.1978 |
| No log        | 8.0   | 56   | 323.2227        | 0.65     | 0.4632     | 1.7803 | 0.65     | 0.5195   | 0.2313 | 0.1422 |
| No log        | 9.0   | 63   | 322.5265        | 0.74     | 0.4177     | 1.7538 | 0.74     | 0.6302   | 0.2442 | 0.1113 |
| No log        | 10.0  | 70   | 322.1928        | 0.705    | 0.4013     | 1.5880 | 0.705    | 0.5864   | 0.2147 | 0.1118 |
| No log        | 11.0  | 77   | 322.2687        | 0.795    | 0.4006     | 1.2854 | 0.795    | 0.7476   | 0.2719 | 0.0942 |
| No log        | 12.0  | 84   | 321.6652        | 0.725    | 0.3754     | 1.3462 | 0.7250   | 0.6521   | 0.2238 | 0.0920 |
| No log        | 13.0  | 91   | 322.3688        | 0.785    | 0.3951     | 1.3209 | 0.785    | 0.7260   | 0.2712 | 0.0805 |
| No log        | 14.0  | 98   | 321.7083        | 0.72     | 0.3915     | 1.4854 | 0.72     | 0.6220   | 0.1963 | 0.0986 |
| No log        | 15.0  | 105  | 321.6171        | 0.8      | 0.3614     | 1.3397 | 0.8000   | 0.7427   | 0.2531 | 0.0741 |
| No log        | 16.0  | 112  | 321.0427        | 0.77     | 0.3502     | 1.1461 | 0.7700   | 0.7082   | 0.1976 | 0.0769 |
| No log        | 17.0  | 119  | 321.1529        | 0.735    | 0.3827     | 1.5751 | 0.735    | 0.6769   | 0.1926 | 0.0973 |
| No log        | 18.0  | 126  | 321.0808        | 0.78     | 0.3611     | 1.2529 | 0.78     | 0.7199   | 0.2242 | 0.0762 |
| No log        | 19.0  | 133  | 321.6684        | 0.795    | 0.3835     | 1.1789 | 0.795    | 0.7506   | 0.2823 | 0.0712 |
| No log        | 20.0  | 140  | 321.2322        | 0.78     | 0.3682     | 1.1715 | 0.78     | 0.7356   | 0.2532 | 0.0752 |
| No log        | 21.0  | 147  | 320.4927        | 0.795    | 0.3458     | 1.3764 | 0.795    | 0.7504   | 0.2178 | 0.0710 |
| No log        | 22.0  | 154  | 320.8896        | 0.8      | 0.3568     | 1.0908 | 0.8000   | 0.7536   | 0.2709 | 0.0677 |
| No log        | 23.0  | 161  | 320.9060        | 0.785    | 0.3774     | 1.1571 | 0.785    | 0.7414   | 0.2712 | 0.0719 |
| No log        | 24.0  | 168  | 320.9026        | 0.795    | 0.3718     | 1.0871 | 0.795    | 0.7465   | 0.2718 | 0.0690 |
| No log        | 25.0  | 175  | 320.7932        | 0.805    | 0.3601     | 1.0998 | 0.805    | 0.7699   | 0.2620 | 0.0614 |
| No log        | 26.0  | 182  | 321.2285        | 0.735    | 0.4164     | 1.8530 | 0.735    | 0.7051   | 0.2814 | 0.0889 |
| No log        | 27.0  | 189  | 320.8364        | 0.775    | 0.4028     | 1.4063 | 0.775    | 0.7412   | 0.2687 | 0.0836 |
| No log        | 28.0  | 196  | 320.0800        | 0.785    | 0.3548     | 1.2123 | 0.785    | 0.7394   | 0.2055 | 0.0740 |
| No log        | 29.0  | 203  | 319.9995        | 0.79     | 0.3526     | 1.2296 | 0.79     | 0.7381   | 0.2363 | 0.0691 |
| No log        | 30.0  | 210  | 320.0685        | 0.795    | 0.3588     | 1.2765 | 0.795    | 0.7447   | 0.2310 | 0.0725 |
| No log        | 31.0  | 217  | 320.0981        | 0.805    | 0.3699     | 1.0128 | 0.805    | 0.7690   | 0.2868 | 0.0701 |
| No log        | 32.0  | 224  | 320.5063        | 0.8      | 0.3900     | 1.1437 | 0.8000   | 0.7650   | 0.3141 | 0.0679 |
| No log        | 33.0  | 231  | 319.8609        | 0.795    | 0.3549     | 1.2051 | 0.795    | 0.7526   | 0.2485 | 0.0697 |
| No log        | 34.0  | 238  | 319.6974        | 0.81     | 0.3600     | 1.0124 | 0.81     | 0.7724   | 0.2671 | 0.0672 |
| No log        | 35.0  | 245  | 319.5988        | 0.795    | 0.3513     | 1.1480 | 0.795    | 0.7540   | 0.2425 | 0.0679 |
| No log        | 36.0  | 252  | 319.6317        | 0.8      | 0.3544     | 1.2190 | 0.8000   | 0.7607   | 0.2449 | 0.0674 |
| No log        | 37.0  | 259  | 319.6821        | 0.81     | 0.3531     | 1.0714 | 0.81     | 0.7672   | 0.2590 | 0.0662 |
| No log        | 38.0  | 266  | 319.7618        | 0.805    | 0.3754     | 1.0421 | 0.805    | 0.7625   | 0.2973 | 0.0701 |
| No log        | 39.0  | 273  | 319.9920        | 0.775    | 0.3843     | 1.0821 | 0.775    | 0.7374   | 0.2801 | 0.0723 |
| No log        | 40.0  | 280  | 319.3407        | 0.765    | 0.3633     | 1.2213 | 0.765    | 0.7041   | 0.2274 | 0.0767 |
| No log        | 41.0  | 287  | 319.2732        | 0.765    | 0.3696     | 1.2638 | 0.765    | 0.7184   | 0.2315 | 0.0835 |
| No log        | 42.0  | 294  | 319.5948        | 0.805    | 0.3685     | 1.0782 | 0.805    | 0.7625   | 0.2678 | 0.0661 |
| No log        | 43.0  | 301  | 319.7181        | 0.8      | 0.3776     | 1.0004 | 0.8000   | 0.7507   | 0.2598 | 0.0672 |
| No log        | 44.0  | 308  | 319.1170        | 0.77     | 0.3619     | 1.2129 | 0.7700   | 0.7159   | 0.2557 | 0.0787 |
| No log        | 45.0  | 315  | 319.5949        | 0.8      | 0.3809     | 1.1448 | 0.8000   | 0.7670   | 0.2868 | 0.0688 |
| No log        | 46.0  | 322  | 319.0327        | 0.79     | 0.3675     | 1.2386 | 0.79     | 0.7315   | 0.2546 | 0.0790 |
| No log        | 47.0  | 329  | 319.3806        | 0.805    | 0.3665     | 1.1368 | 0.805    | 0.7620   | 0.2737 | 0.0700 |
| No log        | 48.0  | 336  | 319.4999        | 0.795    | 0.3836     | 1.0256 | 0.795    | 0.7550   | 0.2800 | 0.0748 |
| No log        | 49.0  | 343  | 319.2553        | 0.8      | 0.3660     | 1.2011 | 0.8000   | 0.7573   | 0.2698 | 0.0679 |
| No log        | 50.0  | 350  | 319.3495        | 0.805    | 0.3836     | 1.1055 | 0.805    | 0.7634   | 0.3004 | 0.0671 |
| No log        | 51.0  | 357  | 319.1643        | 0.8      | 0.3660     | 1.1980 | 0.8000   | 0.7497   | 0.2641 | 0.0709 |
| No log        | 52.0  | 364  | 319.1483        | 0.795    | 0.3651     | 1.0776 | 0.795    | 0.7561   | 0.2856 | 0.0683 |
| No log        | 53.0  | 371  | 319.0104        | 0.79     | 0.3724     | 1.1653 | 0.79     | 0.7422   | 0.2512 | 0.0724 |
| No log        | 54.0  | 378  | 319.1622        | 0.795    | 0.3814     | 1.2807 | 0.795    | 0.7456   | 0.2644 | 0.0759 |
| No log        | 55.0  | 385  | 319.1554        | 0.8      | 0.3694     | 1.2710 | 0.8000   | 0.7570   | 0.2877 | 0.0667 |
| No log        | 56.0  | 392  | 319.2158        | 0.79     | 0.3795     | 1.1678 | 0.79     | 0.7509   | 0.2942 | 0.0692 |
| No log        | 57.0  | 399  | 319.1813        | 0.795    | 0.3839     | 1.1243 | 0.795    | 0.7529   | 0.2835 | 0.0733 |
| No log        | 58.0  | 406  | 318.7599        | 0.81     | 0.3632     | 1.1484 | 0.81     | 0.7738   | 0.3030 | 0.0691 |
| No log        | 59.0  | 413  | 319.0827        | 0.805    | 0.3792     | 1.2070 | 0.805    | 0.7685   | 0.2901 | 0.0674 |
| No log        | 60.0  | 420  | 318.6928        | 0.805    | 0.3661     | 1.1517 | 0.805    | 0.7534   | 0.2492 | 0.0719 |
| No log        | 61.0  | 427  | 318.8309        | 0.805    | 0.3714     | 1.2785 | 0.805    | 0.7517   | 0.2674 | 0.0699 |
| No log        | 62.0  | 434  | 318.9468        | 0.8      | 0.3794     | 1.1549 | 0.8000   | 0.7566   | 0.2862 | 0.0707 |
| No log        | 63.0  | 441  | 318.8059        | 0.785    | 0.3774     | 1.2460 | 0.785    | 0.7487   | 0.2721 | 0.0752 |
| No log        | 64.0  | 448  | 318.7155        | 0.81     | 0.3659     | 1.1963 | 0.81     | 0.7660   | 0.2676 | 0.0680 |
| No log        | 65.0  | 455  | 318.8439        | 0.795    | 0.3799     | 1.0230 | 0.795    | 0.7464   | 0.2797 | 0.0700 |
| No log        | 66.0  | 462  | 318.7784        | 0.79     | 0.3783     | 1.3168 | 0.79     | 0.7503   | 0.2618 | 0.0804 |
| No log        | 67.0  | 469  | 318.9019        | 0.795    | 0.3802     | 1.2003 | 0.795    | 0.7503   | 0.2934 | 0.0702 |
| No log        | 68.0  | 476  | 318.6647        | 0.8      | 0.3728     | 1.1395 | 0.8000   | 0.7590   | 0.2718 | 0.0699 |
| No log        | 69.0  | 483  | 318.3780        | 0.8      | 0.3688     | 1.2812 | 0.8000   | 0.7602   | 0.2690 | 0.0728 |
| No log        | 70.0  | 490  | 318.8004        | 0.8      | 0.3779     | 1.0682 | 0.8000   | 0.7607   | 0.2887 | 0.0682 |
| No log        | 71.0  | 497  | 318.7021        | 0.8      | 0.3748     | 1.1101 | 0.8000   | 0.7545   | 0.2977 | 0.0691 |
| 322.4844      | 72.0  | 504  | 318.3595        | 0.79     | 0.3779     | 1.2333 | 0.79     | 0.7386   | 0.2617 | 0.0843 |
| 322.4844      | 73.0  | 511  | 318.5725        | 0.805    | 0.3740     | 1.2108 | 0.805    | 0.7674   | 0.2762 | 0.0677 |
| 322.4844      | 74.0  | 518  | 318.7131        | 0.81     | 0.3822     | 1.2048 | 0.81     | 0.7660   | 0.2971 | 0.0696 |
| 322.4844      | 75.0  | 525  | 318.6258        | 0.775    | 0.3806     | 1.1511 | 0.775    | 0.7228   | 0.2824 | 0.0743 |
| 322.4844      | 76.0  | 532  | 318.5414        | 0.8      | 0.3746     | 1.2136 | 0.8000   | 0.7563   | 0.2872 | 0.0708 |
| 322.4844      | 77.0  | 539  | 318.5404        | 0.795    | 0.3765     | 1.1414 | 0.795    | 0.7551   | 0.2905 | 0.0707 |
| 322.4844      | 78.0  | 546  | 318.5820        | 0.8      | 0.3806     | 1.1653 | 0.8000   | 0.7573   | 0.2888 | 0.0707 |
| 322.4844      | 79.0  | 553  | 318.5909        | 0.8      | 0.3838     | 1.2343 | 0.8000   | 0.7563   | 0.2778 | 0.0754 |
| 322.4844      | 80.0  | 560  | 318.6398        | 0.795    | 0.3874     | 1.1097 | 0.795    | 0.7520   | 0.3045 | 0.0727 |
| 322.4844      | 81.0  | 567  | 318.6250        | 0.795    | 0.3860     | 1.1612 | 0.795    | 0.7542   | 0.3079 | 0.0727 |
| 322.4844      | 82.0  | 574  | 318.5269        | 0.795    | 0.3825     | 1.2812 | 0.795    | 0.7451   | 0.2723 | 0.0737 |
| 322.4844      | 83.0  | 581  | 318.5790        | 0.795    | 0.3846     | 1.1575 | 0.795    | 0.7455   | 0.2984 | 0.0723 |
| 322.4844      | 84.0  | 588  | 318.4343        | 0.795    | 0.3826     | 1.2088 | 0.795    | 0.7532   | 0.2852 | 0.0746 |
| 322.4844      | 85.0  | 595  | 318.3853        | 0.795    | 0.3792     | 1.2784 | 0.795    | 0.7456   | 0.3003 | 0.0729 |
| 322.4844      | 86.0  | 602  | 318.5143        | 0.805    | 0.3854     | 1.1745 | 0.805    | 0.7636   | 0.3071 | 0.0705 |
| 322.4844      | 87.0  | 609  | 318.3533        | 0.805    | 0.3763     | 1.1579 | 0.805    | 0.7679   | 0.2805 | 0.0694 |
| 322.4844      | 88.0  | 616  | 318.4745        | 0.795    | 0.3860     | 1.0964 | 0.795    | 0.7539   | 0.2952 | 0.0712 |
| 322.4844      | 89.0  | 623  | 318.4909        | 0.805    | 0.3829     | 1.1544 | 0.805    | 0.7673   | 0.3035 | 0.0700 |
| 322.4844      | 90.0  | 630  | 318.4910        | 0.8      | 0.3828     | 1.1537 | 0.8000   | 0.7497   | 0.2730 | 0.0717 |
| 322.4844      | 91.0  | 637  | 318.5176        | 0.8      | 0.3855     | 1.1613 | 0.8000   | 0.7552   | 0.2815 | 0.0718 |
| 322.4844      | 92.0  | 644  | 318.4100        | 0.795    | 0.3810     | 1.2215 | 0.795    | 0.7532   | 0.2696 | 0.0731 |
| 322.4844      | 93.0  | 651  | 318.3500        | 0.805    | 0.3765     | 1.2181 | 0.805    | 0.7702   | 0.2790 | 0.0705 |
| 322.4844      | 94.0  | 658  | 318.3257        | 0.805    | 0.3785     | 1.2218 | 0.805    | 0.7678   | 0.3114 | 0.0704 |
| 322.4844      | 95.0  | 665  | 318.3990        | 0.8      | 0.3823     | 1.1485 | 0.8000   | 0.7585   | 0.2901 | 0.0710 |
| 322.4844      | 96.0  | 672  | 318.5006        | 0.81     | 0.3862     | 1.1518 | 0.81     | 0.7724   | 0.2925 | 0.0698 |
| 322.4844      | 97.0  | 679  | 318.3142        | 0.8      | 0.3780     | 1.1608 | 0.8000   | 0.7557   | 0.2916 | 0.0716 |
| 322.4844      | 98.0  | 686  | 318.3767        | 0.795    | 0.3819     | 1.2208 | 0.795    | 0.7526   | 0.2764 | 0.0731 |
| 322.4844      | 99.0  | 693  | 318.4233        | 0.8      | 0.3810     | 1.1532 | 0.8000   | 0.7557   | 0.2786 | 0.0706 |
| 322.4844      | 100.0 | 700  | 318.4368        | 0.805    | 0.3825     | 1.1523 | 0.805    | 0.7673   | 0.2987 | 0.0702 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1