--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-ecg results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9642857142857143 --- # vit-base-ecg This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1003 - Accuracy: 0.9643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.596 | 2.4390 | 100 | 0.5431 | 0.8214 | | 0.0656 | 4.8780 | 200 | 0.1628 | 0.95 | | 0.0192 | 7.3171 | 300 | 0.1003 | 0.9643 | | 0.0926 | 9.7561 | 400 | 0.1262 | 0.95 | | 0.0064 | 12.1951 | 500 | 0.1611 | 0.9643 | | 0.0049 | 14.6341 | 600 | 0.1539 | 0.9643 | | 0.0044 | 17.0732 | 700 | 0.1509 | 0.9643 | | 0.0041 | 19.5122 | 800 | 0.1499 | 0.9643 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1