File size: 1,830 Bytes
7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b 8d257ef 7a0b34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tinybert-TG-HS-HX-parentpretrained
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinybert-TG-HS-HX-parentpretrained
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1937
- Accuracy: 0.8230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.2898091511494136e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1819 | 1.0 | 197 | 0.1923 | 0.8227 |
| 0.1791 | 2.0 | 394 | 0.1922 | 0.8223 |
| 0.1772 | 3.0 | 591 | 0.1950 | 0.8143 |
| 0.1761 | 4.0 | 788 | 0.1932 | 0.8239 |
| 0.1756 | 5.0 | 985 | 0.1932 | 0.8234 |
| 0.1752 | 6.0 | 1182 | 0.1939 | 0.8242 |
| 0.1759 | 7.0 | 1379 | 0.1937 | 0.8230 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.1
- Datasets 2.15.0
- Tokenizers 0.15.0
|