File size: 2,845 Bytes
13dab70
ea540dc
 
13dab70
 
ea540dc
 
13dab70
 
 
 
 
 
 
 
 
 
 
 
ea540dc
13dab70
 
 
ea540dc
13dab70
 
 
ea540dc
13dab70
 
 
 
 
 
 
ea540dc
13dab70
ea540dc
 
13dab70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-common_voice-tr-demo
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: COMMON_VOICE - TR
      type: common_voice
      config: tr
      split: test
      args: 'Config: tr, Training split: train+validation, Eval split: test'
    metrics:
    - name: Wer
      type: wer
      value: 0.35113880093963845
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3920
- Wer: 0.3511

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 0.92  | 100  | 3.5898          | 1.0    |
| No log        | 1.83  | 200  | 3.0073          | 0.9999 |
| No log        | 2.75  | 300  | 0.9230          | 0.7813 |
| No log        | 3.67  | 400  | 0.5698          | 0.6135 |
| 3.1746        | 4.59  | 500  | 0.5274          | 0.5653 |
| 3.1746        | 5.5   | 600  | 0.4778          | 0.5123 |
| 3.1746        | 6.42  | 700  | 0.4359          | 0.4725 |
| 3.1746        | 7.34  | 800  | 0.4289          | 0.4485 |
| 3.1746        | 8.26  | 900  | 0.4121          | 0.4288 |
| 0.2282        | 9.17  | 1000 | 0.4249          | 0.4034 |
| 0.2282        | 10.09 | 1100 | 0.4106          | 0.3976 |
| 0.2282        | 11.01 | 1200 | 0.4099          | 0.3935 |
| 0.2282        | 11.93 | 1300 | 0.3970          | 0.3771 |
| 0.2282        | 12.84 | 1400 | 0.4037          | 0.3726 |
| 0.1043        | 13.76 | 1500 | 0.3953          | 0.3636 |
| 0.1043        | 14.68 | 1600 | 0.3917          | 0.3532 |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2