File size: 4,046 Bytes
979f0a2 f1cf865 979f0a2 f1cf865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
library_name: transformers
license: mit
language:
- fr
- en
tags:
- french
- chocolatine
datasets:
- jpacifico/french-orca-dpo-pairs-revised
pipeline_tag: text-generation
---
### Chocolatine-14B-Instruct-DPO-v1.1
DPO fine-tuned of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) (14B params)
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.
Window context = 4k tokens
### Benchmarks
The first Chocolatine-14B version is already the best-performing < 50B model in terms of MMLU-PRO on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024)
This new version 1.1 is also submitted, results coming soon.
### MT-Bench
Chocolatine-14B-Instruct-DPO-v1.1 is outperforming Phi-3-medium-4k-instruct and its previous version.
And also this v1.1 is pretty close from GPT-4o-mini (first turn is amazing!).
```
########## First turn ##########
score
model turn
Chocolatine-14B-Instruct-DPO-v1.1 1 9.1375
gpt-4o-mini 1 9.1375
Chocolatine-14B-Instruct-4k-DPO 1 8.7250
Phi-3-medium-4k-instruct 1 8.7125
Chocolatine-3B-Instruct-DPO-Revised 1 8.4625
Phi-3-mini-4k-instruct 1 8.4125
gpt-3.5-turbo 1 8.2750
########## Second turn ##########
score
model turn
gpt-4o-mini 2 9.05000
gpt-3.5-turbo 2 8.20625
Chocolatine-14B-Instruct-DPO-v1.1 2 8.18750
Chocolatine-14B-Instruct-4k-DPO 2 8.15000
Phi-3-medium-4k-instruct 2 7.92500
Chocolatine-3B-Instruct-DPO-Revised 2 7.61250
Phi-3-mini-4k-instruct 2 7.38750
########## Average ##########
score
model
gpt-4o-mini 9.093750
Chocolatine-14B-Instruct-DPO-v1.1 8.662500
Chocolatine-14B-Instruct-4k-DPO 8.437500
Phi-3-medium-4k-instruct 8.318750
gpt-3.5-turbo 8.240625
Chocolatine-3B-Instruct-DPO-Revised 8.037500
Phi-3-mini-4k-instruct 7.900000
```
### Usage
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
You can also run Chocolatine using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
### Limitations
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2024
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** MIT |