File size: 1,610 Bytes
fb5c105 8fb43da fb5c105 815f90a fb5c105 8fb43da fb5c105 8fb43da fb5c105 8fb43da fb5c105 8fb43da fb5c105 8fb43da fb5c105 d339892 fb5c105 d339892 fb5c105 d339892 fb5c105 d339892 fb5c105 d339892 fb5c105 815f90a fb5c105 815f90a fb5c105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- jpdiazpardo/guturalScream_metalVocals
model-index:
- name: "Whisper Tiny Metal - Juan Pablo D\xEDaz"
results: []
---
# Whisper Tiny Metal - Juan Pablo Díaz
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Gutural Scream & Metal Vocals dataset.
## Model description
The model is inteded for automatic speech recognition in gutural and scream voice. The model was trained on vocals preprocessed using Spleeter source separtion algorithm.
## Intended uses & limitations
Check out a demo of the model in my 'Spaces' repository: jpdiazpardo/jpdiazpardo-whisper-tiny-metal
Load the dataset from huggingface in your notebook:
```python
from transformers import WhisperForConditionalGeneration, WhisperProcessor
model = WhisperForConditionalGeneration.from_pretrained("jpdiazpardo/whisper-tiny-metal")
processor = WhisperProcessor.from_pretrained("jpdiazpardo/whisper-tiny-metal")
```
## Training and evaluation data
jpdiazpardo/guturalScream_metalVocals
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 2
### Training results
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|