update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- data_cedulas_layoutv3
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-cedulas_v3
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: data_cedulas_layoutv3
|
20 |
+
type: data_cedulas_layoutv3
|
21 |
+
config: default
|
22 |
+
split: test
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8991596638655462
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9067796610169492
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.9029535864978903
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9816565809379728
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# layoutlmv3-finetuned-cedulas_v3
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_cedulas_layoutv3 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0832
|
47 |
+
- Precision: 0.8992
|
48 |
+
- Recall: 0.9068
|
49 |
+
- F1: 0.9030
|
50 |
+
- Accuracy: 0.9817
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 5e-06
|
70 |
+
- train_batch_size: 4
|
71 |
+
- eval_batch_size: 4
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 2500
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 3.12 | 250 | 0.7409 | 0.2850 | 0.2729 | 0.2788 | 0.8614 |
|
82 |
+
| 0.9048 | 6.25 | 500 | 0.3660 | 0.6222 | 0.6559 | 0.6386 | 0.9393 |
|
83 |
+
| 0.9048 | 9.38 | 750 | 0.2132 | 0.7492 | 0.7593 | 0.7542 | 0.9544 |
|
84 |
+
| 0.2923 | 12.5 | 1000 | 0.1467 | 0.7830 | 0.7949 | 0.7889 | 0.9661 |
|
85 |
+
| 0.2923 | 15.62 | 1250 | 0.1172 | 0.8114 | 0.8237 | 0.8175 | 0.9701 |
|
86 |
+
| 0.1445 | 18.75 | 1500 | 0.1013 | 0.8560 | 0.8763 | 0.8660 | 0.9766 |
|
87 |
+
| 0.1445 | 21.88 | 1750 | 0.0952 | 0.8811 | 0.8915 | 0.8863 | 0.9794 |
|
88 |
+
| 0.0956 | 25.0 | 2000 | 0.0876 | 0.8923 | 0.8983 | 0.8953 | 0.9807 |
|
89 |
+
| 0.0956 | 28.12 | 2250 | 0.0840 | 0.9005 | 0.9051 | 0.9028 | 0.9811 |
|
90 |
+
| 0.0766 | 31.25 | 2500 | 0.0832 | 0.8992 | 0.9068 | 0.9030 | 0.9817 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.29.2
|
96 |
+
- Pytorch 2.0.1+cu118
|
97 |
+
- Datasets 2.12.0
|
98 |
+
- Tokenizers 0.13.3
|