jpino commited on
Commit
9a2dc80
1 Parent(s): 4352315

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - data_registros_layoutv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-registros_v3
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: data_registros_layoutv3
20
+ type: data_registros_layoutv3
21
+ config: default
22
+ split: test
23
+ args: default
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8168168168168168
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8802588996763754
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8473520249221185
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9726255293405929
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-registros_v3
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the data_registros_layoutv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1730
47
+ - Precision: 0.8168
48
+ - Recall: 0.8803
49
+ - F1: 0.8474
50
+ - Accuracy: 0.9726
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 5e-06
70
+ - train_batch_size: 4
71
+ - eval_batch_size: 4
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 1000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 10.87 | 250 | 0.4505 | 0.2272 | 0.2460 | 0.2362 | 0.8929 |
82
+ | 0.641 | 21.74 | 500 | 0.2718 | 0.6121 | 0.6715 | 0.6404 | 0.9374 |
83
+ | 0.641 | 32.61 | 750 | 0.1971 | 0.7854 | 0.8528 | 0.8177 | 0.9669 |
84
+ | 0.2206 | 43.48 | 1000 | 0.1730 | 0.8168 | 0.8803 | 0.8474 | 0.9726 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.29.2
90
+ - Pytorch 2.0.1+cu118
91
+ - Datasets 2.12.0
92
+ - Tokenizers 0.13.3