File size: 25,790 Bytes
bee10cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import sys
import time
from functools import partial
from typing import Any, Dict, Optional, Tuple
from warnings import warn
import torch
from omegaconf import DictConfig
from torch import nn
from torch.distributed import destroy_process_group, init_process_group
from torch.distributed.fsdp import (
FullOptimStateDictConfig,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
StateDictType,
)
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from torchtune import config, modules, utils
from torchtune.modules.peft.peft_utils import (
get_adapter_params,
get_merged_lora_ckpt,
set_trainable_params,
validate_state_dict_for_lora,
)
from torchtune.recipe_interfaces import FTRecipeInterface
from tqdm import tqdm
log = utils.get_logger("DEBUG")
class LoRAFinetuneRecipeDistributed(FTRecipeInterface):
"""
Distributed LoRA finetuning recipe for dense transformer-based LLMs such as Llama2. This recipe supports
distributed training and can be run on a single node (1 to 8 GPUs).
Features:
- FSDP. Supported using PyTorch's FSDP APIs. DDP is currently not supported. Traning on CPU is not
supported.
- Activation Checkpointing. This can be controlled using the ``activation_checkpointing``
flag. Activation checkpointing helps reduce the memory footprint since we no longer keep
activations in memory and instead recompute them during the backward pass. This is especially
helpful for larger batch sizes when you're memory constrained. But these savings in memory
come at the cost of training performance. In most cases training can slow-down quite a bit as
a result of this activation recomputation.
- Precision. Full fp32 and bf16 training are supported. Precision is controlled using the ``dtype``
flag. When ``dtype=bf16``, all activations, gradients and optimizer states are in bfloat16. In
most cases this should halve the memory footprint of full precision (fp32) training, without
loss in model quality (will depend on the model, training data and other settings). For
GPUs which do not support bfloat16, we fall back to fp32. Mixed precision training and fp16
precision are currently not supported.
- Gradient Accumulation. You can simulate larger batch sizes by accumulating gradients. This is
controlled using the ``gradient_accumulation_steps`` flag.
Total Batch Size = batch_size * number of GPUs * gradient accumulation steps.
For example: with batch_size=1, nproc_per_node=2 and gradient_accumulation_steps=32 we get a
total batch size of 64.
Gradient accumulation is especially useful when you are memory constrained. In this case,
accumulating gradients might give you better training speed than enabling activation
checkpointing.
- Checkpointing. Model weights are checkpointed both at the end of each epoch and at the end of
training. Currently we checkpoint both the adapter weights (trainable params only) and the
complete merged weights (adapter weights added back to the base model). For more details
please take a look at our LoRA tutorial
(https://pytorch.org/torchtune/main/tutorials/lora_finetune.html).
Optimizer State and recipe state (seed, total_epochs, number of epochs run etc) are
only saved at the end of a given epoch and used in case of resuming training. Resuming
training is controlled by the ``resume_from_checkpoint`` flag. Mid-epoch checkpointing is
currently not supported.
For more details on the checkpointer, please take a look at
our checkpointer deepdive (https://pytorch.org/torchtune/main/tutorials/checkpointer.html).
- Logging. Terminal, Disk, WandB and TensorBoard are all supported.
For a full list of example configs for this recipe, run ``tune ls`` on the command line. Each config
has example commands for how to kick-off training.
Args:
cfg (DictConfig): OmegaConf object parsed from yaml file
Raises:
ValueError: If ``dtype`` is set to fp16.
ValueError: If world_size is 1
RuntimeError: If ``dtype`` is set to bf16 and the hardware does not support bf16.
"""
def __init__(self, cfg: DictConfig) -> None:
self._device = utils.get_device(device=cfg.device)
self._dtype = utils.get_dtype(cfg.dtype, device=self._device)
if self._dtype == torch.float16:
raise ValueError(
"full fp16 training is not supported with this recipe. Please use bf16 or fp32 instead."
)
_, rank = utils.get_world_size_and_rank()
# _is_rank_zero is used primarily for logging. In the future, the logger
# should directly take care of this
self._is_rank_zero = rank == 0
# logging attributes
self._output_dir = cfg.output_dir
self._log_every_n_steps = cfg.log_every_n_steps if cfg.log_every_n_steps else 1
self._log_peak_memory_every_n_steps = 100
# training attributes
self._enable_activation_checkpointing = cfg.enable_activation_checkpointing
# These attributes constitute the recipe state and are updated by ``load_checkpoint``
# when ``resume_from_checkpoint`` is ``True``
self.seed = utils.set_seed(seed=cfg.seed)
self.epochs_run = 0
self.total_epochs = cfg.epochs
self.max_steps_per_epoch = cfg.max_steps_per_epoch
self.total_training_steps = 0
self._resume_from_checkpoint = cfg.resume_from_checkpoint
self._gradient_accumulation_steps = cfg.gradient_accumulation_steps
def load_checkpoint(self, cfg_checkpointer: DictConfig) -> Dict[str, Any]:
"""
Extract the checkpoint state from file and validate. This includes the
base model weights. If resume_from_checkpoint is True, this also includes
the adapter weights and recipe state
"""
self._checkpointer = config.instantiate(
cfg_checkpointer,
resume_from_checkpoint=self._resume_from_checkpoint,
)
checkpoint_dict = self._checkpointer.load_checkpoint()
# When resuming from checkpoint for LoRA, the recipe expects the adapter weights
# and recipe state to be present. The keys should match up with what ``save_checkpoint``
# used to create these intermediate checkpoints
if self._resume_from_checkpoint:
if utils.ADAPTER_KEY not in checkpoint_dict:
raise ValueError(
"Adapter weights not found. Please ensure a valid adapter checkpoint is provided."
)
# _update_recipe_state will throw an exception if the recipe state is not corrctly loaded
# no need to check here
self._update_recipe_state(checkpoint_dict)
return checkpoint_dict
def _update_recipe_state(self, ckpt_dict: Dict[str, Any]) -> None:
"""
Updates the recipe state from checkpoint.
"""
if not (
utils.SEED_KEY in ckpt_dict
and utils.TOTAL_EPOCHS_KEY in ckpt_dict
and utils.MAX_STEPS_KEY in ckpt_dict
):
raise KeyError(
"Checkpoint does not contain the required keys needed for updating recipe state."
"Are you sure you passed in the right recipe checkpoint?"
)
# If seed, total_epoch or max_steps_per_epoch don't match,
# warn the user and overwrite
if (
self.seed != ckpt_dict[utils.SEED_KEY]
or self.total_epochs != ckpt_dict[utils.TOTAL_EPOCHS_KEY]
or self.max_steps_per_epoch != ckpt_dict[utils.MAX_STEPS_KEY]
):
warn(
message="""Configured value for seed, epochs or max_steps_per_epoch
does not match the value stored in checkpoint."""
)
self.seed = utils.set_seed(seed=ckpt_dict[utils.SEED_KEY])
self.epochs_run = ckpt_dict[utils.EPOCHS_KEY]
self.total_epochs = ckpt_dict[utils.TOTAL_EPOCHS_KEY]
self.max_steps_per_epoch = ckpt_dict[utils.MAX_STEPS_KEY]
def setup(self, cfg: DictConfig) -> None:
"""
Setup the recipe state. This includes recipe state (if resume_from_checkpoint is True),
model, tokenizer, loss, optimizer, learning rate scheduler, sampler, and dataloader.
"""
if self._is_rank_zero:
self._metric_logger = config.instantiate(cfg.metric_logger)
# log config with parameter override
self._metric_logger.log_config(cfg)
checkpoint_dict = self.load_checkpoint(cfg_checkpointer=cfg.checkpointer)
self._model = self._setup_model(
cfg_model=cfg.model,
enable_activation_checkpointing=cfg.enable_activation_checkpointing,
base_model_state_dict=checkpoint_dict[utils.MODEL_KEY],
lora_weights_state_dict=(
checkpoint_dict[utils.ADAPTER_KEY]
if self._resume_from_checkpoint
else None
),
)
self._tokenizer = config.instantiate(cfg.tokenizer)
self._optimizer = self._setup_optimizer(
cfg_optimizer=cfg.optimizer,
opt_state_dict=checkpoint_dict[utils.OPT_KEY]
if self._resume_from_checkpoint
else None,
)
self._loss_fn = config.instantiate(cfg.loss)
# sampler and dataloader depend on the tokenizer and loss_fn and should be
# setup after all of these are setup
self._sampler, self._dataloader = self._setup_data(
cfg_dataset=cfg.dataset,
shuffle=cfg.shuffle,
batch_size=cfg.batch_size,
)
# Finally update the recipe state which can only be correctly set after all of the
# other components have been initialized and updated.
# Number of training steps in each epoch depends on the number of batches produced
# by the dataloader and the max_steps_per_epoch param set by the user and is used
# for logging and tracking training state. This should be computed after the dataloader
# has been setup
self._steps_per_epoch = (
len(self._dataloader) // self._gradient_accumulation_steps
)
if (
self.max_steps_per_epoch is not None
and self.max_steps_per_epoch < self._steps_per_epoch
):
self._steps_per_epoch = self.max_steps_per_epoch
self.total_training_steps = self.epochs_run * self._steps_per_epoch
# Learning rate scheduler can only be set up after number of steps
# has been computed
self._lr_scheduler = self._setup_lr_scheduler(
cfg_lr_scheduler=cfg.lr_scheduler,
num_training_steps=self.total_epochs * self._steps_per_epoch,
last_epoch=self.total_training_steps - 1,
)
def _setup_model(
self,
cfg_model: DictConfig,
enable_activation_checkpointing: bool,
base_model_state_dict: Dict[str, Any],
lora_weights_state_dict: Optional[Dict[str, Any]] = None,
) -> nn.Module:
"""
Model initialization has some important considerations:
a. To minimize GPU peak memory, we load the model on CPU with the right
dtype. To ensure that we don't instantiate ``world_size`` number of models,
we initialize on meta_device for all ranks other than rank 0.
b. Rank 0 is also responsible for calling ``load_state_dict`` and loading the
model weights from checkpoint.
c. While wrapping the model with FSDP, we set ``sync_module_states``
to TRUE and broadcast module params and buffers from rank 0.
d. The ``device_id`` param ensures that the FSDP initialization happens on
the correct device.
"""
if self._is_rank_zero:
log.info("FSDP is enabled. Instantiating Model on CPU for Rank 0 ...")
init_start = time.perf_counter()
with utils.set_default_dtype(self._dtype):
model = config.instantiate(cfg_model)
log.info(
f"Model instantiation took {time.perf_counter() - init_start:.2f} secs"
)
# The model contains LoRA params which won't have any matching keys in
# the state dict. As a result, we need to load with strict=False.
# Before loading the state dict, ensure the state dict keys for the base
# model and adapters (if available) match the keys in the full LoRA model
# This is a good sanity check to prevent silent errors
validate_state_dict_for_lora(
lora_attn_modules=cfg_model.lora_attn_modules,
apply_lora_to_mlp=cfg_model.apply_lora_to_mlp,
apply_lora_to_output=cfg_model.apply_lora_to_output,
full_model_state_dict_keys=model.state_dict().keys(),
lora_state_dict_keys=(
lora_weights_state_dict.keys()
if lora_weights_state_dict is not None
else None
),
base_model_state_dict_keys=base_model_state_dict.keys(),
)
# Load both the base model weights and (if available) the adapter weights. Both
# of this should happen only on Rank 0
model.load_state_dict(base_model_state_dict, strict=False)
if lora_weights_state_dict:
model.load_state_dict(lora_weights_state_dict, strict=False)
else:
# For non-zero ranks, load the model on meta device
with utils.set_default_dtype(self._dtype), torch.device("meta"):
model = config.instantiate(cfg_model)
if self._dtype == torch.bfloat16:
model = model.to(torch.bfloat16)
# LoRA hyper-params needed for merging weights while saving checkpoints
self._lora_rank = cfg_model.lora_rank
self._lora_alpha = cfg_model.lora_alpha
# Note: this needs to be set before wrapping with FSDP
self.adapter_params = get_adapter_params(model)
set_trainable_params(model, self.adapter_params)
model = FSDP(
module=model,
auto_wrap_policy=utils.lora_fsdp_wrap_policy(
modules_to_wrap={modules.TransformerDecoderLayer}
),
sharding_strategy=torch.distributed.fsdp.ShardingStrategy.FULL_SHARD,
device_id=self._device,
# this recipe does not currently support mixed precision training
mixed_precision=None,
# Ensure we broadcast params and buffers from rank 0
sync_module_states=True,
# Initialize empty modules on all non-zero ranks
param_init_fn=(
lambda module: module.to_empty(
device=torch.device("cuda"), recurse=False
)
if not self._is_rank_zero
else None
),
)
# Ensure no params and buffers are on meta device
utils.validate_no_params_on_meta_device(model)
if enable_activation_checkpointing:
utils.set_activation_checkpointing(
model, auto_wrap_policy={modules.TransformerDecoderLayer}
)
if self._is_rank_zero:
memory_stats = utils.memory_stats_log(device=self._device)
log.info(f"Memory Stats after model init:\n{memory_stats}")
# synchronize before training begins
torch.distributed.barrier()
return model
def _setup_optimizer(
self, cfg_optimizer: DictConfig, opt_state_dict: Optional[Dict[str, Any]] = None
) -> Optimizer:
optimizer = config.instantiate(cfg_optimizer, self._model.parameters())
if opt_state_dict:
# Note: technically we should check _contains_fsdp for
# just the state dict of the adapter cfg, but should be equivalent
opt_state_dict = utils.transform_opt_state_dict(
opt_state_dict, self._model, optimizer
)
optimizer.load_state_dict(opt_state_dict)
if self._is_rank_zero:
log.info("Optimizer and loss are initialized.")
return optimizer
def _setup_lr_scheduler(
self,
cfg_lr_scheduler: DictConfig,
num_training_steps: int,
last_epoch: int,
) -> Optimizer:
lr_scheduler = config.instantiate(
cfg_lr_scheduler,
self._optimizer,
num_training_steps=num_training_steps,
last_epoch=last_epoch,
)
if self._is_rank_zero:
log.info("Learning rate scheduler is initialized.")
return lr_scheduler
def _setup_data(
self,
cfg_dataset: DictConfig,
shuffle: bool,
batch_size: int,
) -> Tuple[DistributedSampler, DataLoader]:
"""
All data related setup happens here. Currently this recipe only supports the
DistributedSamplers with Map-style Datasets which fit into memory. Other samplers,
iterable datasets and streaming datasets are not supported.
"""
world_size, rank = utils.get_world_size_and_rank()
ds = config.instantiate(cfg_dataset, tokenizer=self._tokenizer)
sampler = DistributedSampler(
ds, num_replicas=world_size, rank=rank, shuffle=shuffle, seed=0
)
dataloader = DataLoader(
dataset=ds,
batch_size=batch_size,
sampler=sampler,
collate_fn=partial(
utils.padded_collate,
padding_idx=self._tokenizer.pad_id,
ignore_idx=self._loss_fn.ignore_index,
),
)
if self._is_rank_zero:
log.info("Dataset and Sampler are initialized.")
return sampler, dataloader
def save_checkpoint(
self,
epoch: int,
) -> None:
"""
Checkpoint the state of the recipe. The constructed checkpoint state dict
contains the following information:
- Merged weights with key MODEL_KEY
- Adapter weights with key ADAPTER_KEY
- Relevant recipe state if training is not complete
Checkpointer will save the merged weights, adapter weights and recipe state in
different checkpoint files. To correctly resume from training, the adapter weights
and recipe state must be provided along with the base model weights.
"""
# final dict passed onto the checkpointer
checkpoint_dict = {}
intermediate_checkpoint = epoch + 1 < self.total_epochs
# To prevent GPU memory from spiking during checkpoint save,
# we consolidate the full model and optim state dicts on CPU for rank 0
with FSDP.state_dict_type(
self._model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
cpu_state_dict = self._model.state_dict()
if intermediate_checkpoint:
opt_state_dict = FSDP.optim_state_dict(self._model, self._optimizer)
else:
opt_state_dict = None
# Now that we have the model and opt state dict, create the actual checkpoint dict
# to be sent to the checkpointer and ultimately written to file
if self._is_rank_zero:
# Filter out the adapter keys and weights from the model state dict. These will
# be saved separately
adapter_key_filter = lambda x: x in self.adapter_params
adapter_state_dict = {
k: v for k, v in cpu_state_dict.items() if adapter_key_filter(k)
}
checkpoint_dict.update({utils.ADAPTER_KEY: adapter_state_dict})
# merge the adapter weights and base weights to create the model checkpoint
merged_state_dict = get_merged_lora_ckpt(
cpu_state_dict,
rank=self._lora_rank,
alpha=self._lora_alpha,
)
checkpoint_dict.update({utils.MODEL_KEY: merged_state_dict})
# if training is in-progress, checkpoint the optimizer state and recipe state
# as well.
if intermediate_checkpoint:
checkpoint_dict.update(
{
utils.OPT_KEY: opt_state_dict,
utils.SEED_KEY: self.seed,
utils.EPOCHS_KEY: self.epochs_run,
utils.TOTAL_EPOCHS_KEY: self.total_epochs,
utils.MAX_STEPS_KEY: self.max_steps_per_epoch,
}
)
self._checkpointer.save_checkpoint(
checkpoint_dict,
epoch=epoch,
intermediate_checkpoint=intermediate_checkpoint,
)
def train(self) -> None:
"""
The core training loop.
"""
# clean up before training begins
utils.cleanup_before_training()
_, rank = utils.get_world_size_and_rank()
# zero out the gradients before starting training
self._optimizer.zero_grad()
# self.epochs_run should be non-zero when we're resuming from a checkpoint
for curr_epoch in range(self.epochs_run, self.total_epochs):
# Update the sampler to ensure data is correctly shuffled across epochs
# in case shuffle is True
self._sampler.set_epoch(curr_epoch)
for idx, batch in enumerate(
pbar := tqdm(self._dataloader, disable=not (rank == 0))
):
if (
self.max_steps_per_epoch is not None
and (idx // self._gradient_accumulation_steps)
== self.max_steps_per_epoch
):
break
input_ids, labels = batch
input_ids = input_ids.to(self._device)
labels = labels.to(self._device)
logits = self._model(input_ids)
# Shift so that tokens < n predict n
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
logits = logits.transpose(1, 2)
# Compute loss
loss = self._loss_fn(logits, labels)
if (
self.total_training_steps % self._log_every_n_steps == 0
and self._is_rank_zero
):
pbar.set_description(f"{curr_epoch+1}|{idx+1}|Loss: {loss.item()}")
self._metric_logger.log_dict(
{
"loss": loss.item(),
"lr": self._optimizer.param_groups[0]["lr"],
"gpu_resources": torch.cuda.memory_allocated(),
},
step=self.total_training_steps, # Each step is unique, not limited to each epoch
)
loss = loss / self._gradient_accumulation_steps
loss.backward()
if (idx + 1) % self._gradient_accumulation_steps == 0:
self._optimizer.step()
self._optimizer.zero_grad(set_to_none=True)
self._lr_scheduler.step()
# Update the number of steps when the weights are updated
self.total_training_steps += 1
if (
self.total_training_steps % self._log_peak_memory_every_n_steps == 0
and self._is_rank_zero
):
# Log peak memory for iteration
memory_stats = utils.memory_stats_log(device=self._device)
self._metric_logger.log_dict(
memory_stats, step=self.total_training_steps
)
self.epochs_run += 1
self.save_checkpoint(epoch=curr_epoch)
def cleanup(self) -> None:
if self._is_rank_zero:
self._metric_logger.close()
destroy_process_group()
@config.parse
def recipe_main(cfg: DictConfig) -> None:
"""
Entry point for the recipe.
Configurable parameters are read in the following order:
- Parameters specified in config (see available configs through ``tune ls``)
- Overwritten by arguments from the command-line
"""
if not utils.is_distributed():
raise RuntimeError(
"Distributed finetune recipe should be run via a distributed launcher."
"If using tune CLI, please specify --nnodes 1 and --nproc_per_node [num_gpus]"
)
init_process_group(backend="gloo" if cfg.device == "cpu" else "nccl")
config.log_config(recipe_name="LoRAFinetuneRecipeDistributed", cfg=cfg)
recipe = LoRAFinetuneRecipeDistributed(cfg=cfg)
recipe.setup(cfg=cfg)
recipe.train()
recipe.cleanup()
if __name__ == "__main__":
sys.exit(recipe_main())
|