Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- SAC-Ant-v4.zip +2 -2
- SAC-Ant-v4/actor.optimizer.pth +2 -2
- SAC-Ant-v4/critic.optimizer.pth +2 -2
- SAC-Ant-v4/data +68 -53
- SAC-Ant-v4/ent_coef_optimizer.pth +2 -2
- SAC-Ant-v4/policy.pth +1 -1
- SAC-Ant-v4/pytorch_variables.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Ant-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: Ant-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 4867.74 +/- 1756.02
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
SAC-Ant-v4.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5735696ef4a4c724941f4036b55c4156f56dc00a8adae1d1a402a19d58763b01
|
3 |
+
size 3381810
|
SAC-Ant-v4/actor.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96acc34126daa0f0da4c70dccbd4ba2db86a375971e8b677d00af4cb231311a6
|
3 |
+
size 623182
|
SAC-Ant-v4/critic.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71faf9a5d2349452df584ae43bc761ed022dd9dd30be88572407d36805bff02a
|
3 |
+
size 1213866
|
SAC-Ant-v4/data
CHANGED
@@ -5,41 +5,86 @@
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
-
"__init__": "<function SACPolicy.__init__ at
|
9 |
-
"_build": "<function SACPolicy._build at
|
10 |
-
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at
|
11 |
-
"reset_noise": "<function SACPolicy.reset_noise at
|
12 |
-
"make_actor": "<function SACPolicy.make_actor at
|
13 |
-
"make_critic": "<function SACPolicy.make_critic at
|
14 |
-
"forward": "<function SACPolicy.forward at
|
15 |
-
"_predict": "<function SACPolicy._predict at
|
16 |
-
"set_training_mode": "<function SACPolicy.set_training_mode at
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
-
"_abc_impl": "<_abc._abc_data object at
|
19 |
},
|
20 |
"verbose": 0,
|
21 |
"policy_kwargs": {
|
22 |
"use_sde": false
|
23 |
},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
-
"_last_obs":
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"use_sde": false,
|
37 |
"sde_sample_freq": -1,
|
38 |
-
"_current_progress_remaining":
|
39 |
"_stats_window_size": 100,
|
40 |
-
"ep_info_buffer":
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"observation_space": {
|
44 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
45 |
":serialized:": "gAWVZQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLG4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSxuFlGgZdJRSlIwGX3NoYXBllEsbhZSMA2xvd5RoESiW2AAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLG4WUaBl0lFKUjARoaWdolGgRKJbYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sbhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
@@ -57,7 +102,7 @@
|
|
57 |
},
|
58 |
"action_space": {
|
59 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
60 |
-
":serialized:": "
|
61 |
"dtype": "float32",
|
62 |
"bounded_below": "[ True True True True True True True True]",
|
63 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -68,39 +113,9 @@
|
|
68 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
69 |
"low_repr": "-1.0",
|
70 |
"high_repr": "1.0",
|
71 |
-
"_np_random":
|
72 |
},
|
73 |
"n_envs": 1,
|
74 |
-
"buffer_size": 1000000,
|
75 |
-
"batch_size": 256,
|
76 |
-
"learning_starts": 10000,
|
77 |
-
"tau": 0.005,
|
78 |
-
"gamma": 0.99,
|
79 |
-
"gradient_steps": 1,
|
80 |
-
"optimize_memory_usage": false,
|
81 |
-
"replay_buffer_class": {
|
82 |
-
":type:": "<class 'abc.ABCMeta'>",
|
83 |
-
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
84 |
-
"__module__": "stable_baselines3.common.buffers",
|
85 |
-
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
86 |
-
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
87 |
-
"__init__": "<function ReplayBuffer.__init__ at 0x1338d0040>",
|
88 |
-
"add": "<function ReplayBuffer.add at 0x1338d0180>",
|
89 |
-
"sample": "<function ReplayBuffer.sample at 0x1338d0220>",
|
90 |
-
"_get_samples": "<function ReplayBuffer._get_samples at 0x1338d02c0>",
|
91 |
-
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x1338d0360>)>",
|
92 |
-
"__abstractmethods__": "frozenset()",
|
93 |
-
"_abc_impl": "<_abc._abc_data object at 0x1338bbd00>"
|
94 |
-
},
|
95 |
-
"replay_buffer_kwargs": {},
|
96 |
-
"train_freq": {
|
97 |
-
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
98 |
-
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
99 |
-
},
|
100 |
-
"use_sde_at_warmup": false,
|
101 |
-
"target_entropy": -8.0,
|
102 |
-
"ent_coef": "auto",
|
103 |
-
"target_update_interval": 1,
|
104 |
"lr_schedule": {
|
105 |
":type:": "<class 'function'>",
|
106 |
":serialized:": "gAWV6gMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMXi9Vc2Vycy9qcmVuL2FuYWNvbmRhMy9lbnZzLzQ3NTYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYUMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL1VzZXJzL2pyZW4vYW5hY29uZGEzL2VudnMvNDc1Ni9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBpoD4wMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaD99lH2UKGgaaDVoKGg2aCl9lGgrTmgsTmgtaBtoLk5oL2gxRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRl2UaEh9lHWGlIZSMC4="
|
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x11f55f240>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x11f55f880>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x11f55f920>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x11f55f9c0>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x11f55fa60>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x11f55fb00>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x11f55fba0>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x11f55fc40>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x11f55fce0>",
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x11f5786c0>"
|
19 |
},
|
20 |
"verbose": 0,
|
21 |
"policy_kwargs": {
|
22 |
"use_sde": false
|
23 |
},
|
24 |
+
"num_timesteps": 975000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1718033158578114641,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVTQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbYAAAAAAAAAIsIIRAUDOE/O7C9Q7BR7j/VNfthvbSyPzyXVpvJ7bO/lpQiAKhL0z8D18h+CUbhvxWlo6uMvOA/FIRu+MXL4L9fhnvbErfgvw6xZ2dVQ+E/sqde5gWw4L8hLofHoszgv9uqvWEFs+A/JCVXXeTsFUDdwjvn5+P1P8hct10pWOa//2kCer+n/b8JnopGCvLxPyWcLDIYsPC/uF7qCg8W4D9GEfMuy6mKP/SL0A8F93e/JCaiknEVeT/Ov4LgNiv0v2rmR+LxdHG/VCNSBpANiz/RP4Nzf3gEwJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsbhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVTQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbYAAAAAAAAANdz/rVocOI/TCP9PzEW7j8JmtfHbs20P4sWpj/mDrG/CxKqlxu81D9eKqDgtlThv4mBY4Niq+A/dMjM7ZfI4L9z2UeORLvgv6DD+Gup8Nw/YcnKGpOt4L8+dx06QNTgvzeSjp0Xa+M/kHYDb5KfFUCuHXM4YeDtP/KzQtAV7+i/8NEW4/beir8QOUIqevntv2a6GaOEVOm/uol/bG0OBcBWN6ttO4O2P3skrpSJfWQ/MQYHE87JUz/0yZSSF2kVQHhwoXjkjhm/QtJBbSrCUD85fNoChIXGv5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsbhpSMAUOUdJRSlC4="
|
43 |
+
},
|
44 |
+
"_episode_num": 1206,
|
45 |
"use_sde": false,
|
46 |
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.02500100000000005,
|
48 |
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKyG15GBnSSMAWyUTdACjAF0lEdAu0BWnjyWiXV9lChoBkdAtKDgQUYbbWgHTegDaAhHQLtHmssQNCt1fZQoaAZHQLU3dGX5WR1oB03oA2gIR0C7TtvSMLncdX2UKGgGR0C0ePtEPUayaAdN6ANoCEdAu1YcJiRW93V9lChoBkdAtEiDUy57PmgHTegDaAhHQLtdcTkhib51fZQoaAZHQLThbIFeOXFoB03oA2gIR0C7aN/A9FF2dX2UKGgGR0C1TgP9pAUtaAdN6ANoCEdAu3AlEa2nbnV9lChoBkdAs8x9p35eq2gHTegDaAhHQLt3Z2xptaZ1fZQoaAZHQLYTPCZnctZoB03oA2gIR0C7fq62SdOJdX2UKGgGR0C1k6XmRvFWaAdN6ANoCEdAu4XtDSgGr3V9lChoBkdAtXuClZX+2mgHTegDaAhHQLuRQ0xubZx1fZQoaAZHQLHzoszVMEloB01qA2gIR0C7l5RyfcvedX2UKGgGR0C1Mf78m8dxaAdN6ANoCEdAu57eFIuoP3V9lChoBkdAtFqEeGO+7GgHTegDaAhHQLumHmWMS9N1fZQoaAZHQLR6mh3JPqNoB03oA2gIR0C7rWuqBErodX2UKGgGR0C0lnilzltCaAdN6ANoCEdAu7hL5DZ13nV9lChoBkdAtSGIvmHP/2gHTegDaAhHQLu/mxFAmiR1fZQoaAZHQLS5+rbQC0ZoB03oA2gIR0C7xtdjkMkQdX2UKGgGR0C1oWGh/RVqaAdN6ANoCEdAu84UlD4QBnV9lChoBkdAtWxwEV32VWgHTegDaAhHQLvVU/d69kB1fZQoaAZHQLN2M+OOsDJoB03oA2gIR0C74LpNKyv+dX2UKGgGR0C0sFd5IH1OaAdN6ANoCEdAu+gDtIClrXV9lChoBkdAtEu5rKvFFWgHTdkDaAhHQLvvKtXgccV1fZQoaAZHQLYMaqD9OypoB03oA2gIR0C79m+uvECOdX2UKGgGR0C0TEfw3HaOaAdN6ANoCEdAu/3L8qFyrHV9lChoBkdAtMbnLr5ZbWgHTegDaAhHQLwJAyxiXpp1fZQoaAZHQLQ7W6y0KJFoB03oA2gIR0C8EEHT7VJ+dX2UKGgGR0C0jUCfxtpFaAdN6ANoCEdAvBeJggHNYHV9lChoBkdAtL4hCMPz4GgHTegDaAhHQLwexaRp1zR1fZQoaAZHQLTHD7mdRSBoB03oA2gIR0C8JgCy2QXAdX2UKGgGR0C06N9fTkQxaAdN6ANoCEdAvDFfmbLEDXV9lChoBkdAtN6lEx7AtWgHTegDaAhHQLw4qfNRm9R1fZQoaAZHQLSJwV7Qb+9oB03oA2gIR0C8P+mxQizLdX2UKGgGR0C0+35oXbdraAdN6ANoCEdAvEc5OwgTy3V9lChoBkdAs+sbi83+/GgHTegDaAhHQLxOgv2oNut1fZQoaAZHQLSFiuKXOW1oB03oA2gIR0C8WfAbuMMrdX2UKGgGR0CzYWavaDf4aAdN6ANoCEdAvGExh3JPqXV9lChoBkdAtIBrlRxcV2gHTegDaAhHQLxobDsMRYl1fZQoaAZHQJ32fKDCgsdoB01+AWgIR0C8azIkzGgjdX2UKGgGR0Cixk4qPOpsaAdNvQFoCEdAvG5tAD7qIXV9lChoBkdAo54AQvpQlGgHTegDaAhHQLx1vGIbfgt1fZQoaAZHQLSHjQPZqVRoB03oA2gIR0C8gSkFW4mUdX2UKGgGR0C06Whc7hegaAdN6ANoCEdAvIhpUOuq3nV9lChoBkdAtFbX2oNutWgHTegDaAhHQLyPuq1w5vN1fZQoaAZHQLVZJy9mHxloB03oA2gIR0C8lw4gzP8idX2UKGgGR0C13ecZgogFaAdN6ANoCEdAvJ5ZrFfiP3V9lChoBkdAtabJO58Sf2gHTegDaAhHQLypm75mAb11fZQoaAZHQLYBQiblRxdoB03oA2gIR0C8sObhrFfidX2UKGgGR0C1OQNFvybyaAdN6ANoCEdAvLgok+otMHV9lChoBkdAqBsNr9ETg2gHTTMCaAhHQLy8Pehf0Ep1fZQoaAZHQLU4swztTk1oB03oA2gIR0C8w3yyIHkcdX2UKGgGR0C05qksasIWaAdN6ANoCEdAvMrIPuogm3V9lChoBkdAaDqfh/Aj6mgHSzhoCEdAvMswVXV9W3V9lChoBkdAtN+cGLUCrGgHTegDaAhHQLzWnYW+GoJ1fZQoaAZHQLO2PndO6/ZoB03oA2gIR0C83ejCk43ndX2UKGgGR0C1XYD544ZNaAdN6ANoCEdAvOU8s+V1OnV9lChoBkdAtNhUD0UXYWgHTegDaAhHQLzskDEm6Xl1fZQoaAZHQLXSB6bvw3JoB03oA2gIR0C8883Yg7o0dX2UKGgGR0C0Mopswco6aAdN6ANoCEdAvP8azru6VnV9lChoBkdAtK6B1q33H2gHTegDaAhHQL0GZgflp491fZQoaAZHQLXca4UeuFJoB03oA2gIR0C9DaVejVQRdX2UKGgGR0C1PBkG/vfCaAdN6ANoCEdAvRT5ul41P3V9lChoBkdAtH0QibDuSmgHTegDaAhHQL0cNu1F6Rh1fZQoaAZHQFopnHeaa1FoB0sqaAhHQL0chfVZs9B1fZQoaAZHQLUql5ZKWcBoB03oA2gIR0C9J1xSHdoGdX2UKGgGR0C1eAEL2HtXaAdN6ANoCEdAvS6w7T2FnXV9lChoBkdAtUKr1XeWOmgHTegDaAhHQL019rqt5lh1fZQoaAZHQLT/rjYqXnhoB03oA2gIR0C9PTzt5UtJdX2UKGgGR0C0HlO2Zy+6aAdN6ANoCEdAvUSGJl8PWnV9lChoBkdAs55Ul9jPOmgHTegDaAhHQL1P2RJVbRp1fZQoaAZHQLWfmMY/FBJoB03oA2gIR0C9Vxp6Y3NtdX2UKGgGR0C0rQbwrlNlaAdN6ANoCEdAvV5bsMRYinV9lChoBkdAtaYb8Lron2gHTegDaAhHQL1lpgQYk3V1fZQoaAZHQLUdCeANG3FoB03oA2gIR0C9bOek1uR+dX2UKGgGR0C2A9Ma0hNeaAdN6ANoCEdAvXhR7ngYQHV9lChoBkdAtO8GHZbpvGgHTegDaAhHQL1/qJPZZjh1fZQoaAZHQLPw6as6q81oB03oA2gIR0C9hu+RLbpNdX2UKGgGR0C0aMD6JqIraAdN6ANoCEdAvY4wzxgAqHV9lChoBkdAtXi555Z8r2gHTegDaAhHQL2Vc3NcGC91fZQoaAZHQLUmXzw+dLBoB03oA2gIR0C9oNRYmsvJdX2UKGgGR0C1Us+5WilBaAdN6ANoCEdAvagRVBD5TXV9lChoBkdAtcx0MH8jzWgHTegDaAhHQL2vUC53C9B1fZQoaAZHQLR7ww3o9s9oB03oA2gIR0C9towRf4RFdX2UKGgGR0C0xi2bwz+FaAdN6ANoCEdAvb3XzPKMenV9lChoBkdAtgInVH4GlmgHTegDaAhHQL3JWTwlSjx1fZQoaAZHQLUksT3qRlpoB03oA2gIR0C90JovN/vwdX2UKGgGR0C1Vp2EoOQRaAdN6ANoCEdAvdfYuHvc8HV9lChoBkdAtgJOPOpsGmgHTegDaAhHQL3fH81Gb1B1fZQoaAZHQLTLodUsFt9oB03oA2gIR0C95l/ra/RFdX2UKGgGR0C1d4bNnoPkaAdN6ANoCEdAvfGsHs1KoXV9lChoBkdAtP3dhfBvaWgHTegDaAhHQL3473mmtQt1fZQoaAZHQLSSlbBXS0BoB03oA2gIR0C+AC3erMkhdX2UKGgGR0C1TbJBX0XhaAdN6ANoCEdAvgdtTFVDKHV9lChoBkdAta8q8Yht+GgHTegDaAhHQL4Ovz4UN8V1fZQoaAZHQK+CfVrhzeZoB038AmgIR0C+GIMFUyYYdX2UKGgGR0C1bb71h9b5aAdN6ANoCEdAvh/CkpI+XHV9lChoBkdAd/bDCgsbvWgHS15oCEdAviBwMfA9FHV9lChoBkdAtVY+U8mrsGgHTegDaAhHQL4nq+dbxEx1fZQoaAZHQLPSBC+lCTloB03oA2gIR0C+LufSMLncdX2UKGgGR0C2FCGvwEyMaAdN6ANoCEdAvjYxl+Vkc3VlLg=="
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 964999,
|
58 |
+
"buffer_size": 1000000,
|
59 |
+
"batch_size": 256,
|
60 |
+
"learning_starts": 10000,
|
61 |
+
"tau": 0.005,
|
62 |
+
"gamma": 0.99,
|
63 |
+
"gradient_steps": 1,
|
64 |
+
"optimize_memory_usage": false,
|
65 |
+
"replay_buffer_class": {
|
66 |
+
":type:": "<class 'abc.ABCMeta'>",
|
67 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
68 |
+
"__module__": "stable_baselines3.common.buffers",
|
69 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
70 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
71 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x11f4d80e0>",
|
72 |
+
"add": "<function ReplayBuffer.add at 0x11f4d8220>",
|
73 |
+
"sample": "<function ReplayBuffer.sample at 0x11f4d82c0>",
|
74 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x11f4d8360>",
|
75 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x11f4d8400>)>",
|
76 |
+
"__abstractmethods__": "frozenset()",
|
77 |
+
"_abc_impl": "<_abc._abc_data object at 0x11f4ccf80>"
|
78 |
+
},
|
79 |
+
"replay_buffer_kwargs": {},
|
80 |
+
"train_freq": {
|
81 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
82 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
83 |
+
},
|
84 |
+
"use_sde_at_warmup": false,
|
85 |
+
"target_entropy": -8.0,
|
86 |
+
"ent_coef": "auto",
|
87 |
+
"target_update_interval": 1,
|
88 |
"observation_space": {
|
89 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
90 |
":serialized:": "gAWVZQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLG4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSxuFlGgZdJRSlIwGX3NoYXBllEsbhZSMA2xvd5RoESiW2AAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLG4WUaBl0lFKUjARoaWdolGgRKJbYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sbhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
|
|
102 |
},
|
103 |
"action_space": {
|
104 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
105 |
+
":serialized:": "gAWVkwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEWlBvnGFOOMULmYSHcqgWqIAjANpbmOUihC5QnmGyi5oMvK+DFticy9DdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
106 |
"dtype": "float32",
|
107 |
"bounded_below": "[ True True True True True True True True]",
|
108 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
113 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
114 |
"low_repr": "-1.0",
|
115 |
"high_repr": "1.0",
|
116 |
+
"_np_random": "Generator(PCG64)"
|
117 |
},
|
118 |
"n_envs": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
"lr_schedule": {
|
120 |
":type:": "<class 'function'>",
|
121 |
":serialized:": "gAWV6gMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMXi9Vc2Vycy9qcmVuL2FuYWNvbmRhMy9lbnZzLzQ3NTYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYUMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL1VzZXJzL2pyZW4vYW5hY29uZGEzL2VudnMvNDc1Ni9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBpoD4wMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaD99lH2UKGgaaDVoKGg2aCl9lGgrTmgsTmgtaBtoLk5oL2gxRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRl2UaEh9lHWGlIZSMC4="
|
SAC-Ant-v4/ent_coef_optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11618164b66181eb7b9c27c061c1bd90f45aade8444ee7f2e898d983e7ea0d8d
|
3 |
+
size 1940
|
SAC-Ant-v4/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1523446
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7818cea3d50189c9b4bdf31ef0db05ef14792dbf364f388089294bf400c1b41
|
3 |
size 1523446
|
SAC-Ant-v4/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1180
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2540f1fd9a6ecb5ac800fcf385ea8c54c9c9e92b1ceda2e1bc54525c866ac2
|
3 |
size 1180
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x13395f1a0>", "_build": "<function SACPolicy._build at 0x13395f7e0>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x13395f880>", "reset_noise": "<function SACPolicy.reset_noise at 0x13395f920>", "make_actor": "<function SACPolicy.make_actor at 0x13395f9c0>", "make_critic": "<function SACPolicy.make_critic at 0x13395fa60>", "forward": "<function SACPolicy.forward at 0x13395fb00>", "_predict": "<function SACPolicy._predict at 0x13395fba0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x13395fc40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x133967740>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 0.0, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLG4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSxuFlGgZdJRSlIwGX3NoYXBllEsbhZSMA2xvd5RoESiW2AAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLG4WUaBl0lFKUjARoaWdolGgRKJbYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sbhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]", "_shape": [27], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x1338d0040>", "add": "<function ReplayBuffer.add at 0x1338d0180>", "sample": "<function ReplayBuffer.sample at 0x1338d0220>", "_get_samples": "<function ReplayBuffer._get_samples at 0x1338d02c0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x1338d0360>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x1338bbd00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6gMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMXi9Vc2Vycy9qcmVuL2FuYWNvbmRhMy9lbnZzLzQ3NTYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYUMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL1VzZXJzL2pyZW4vYW5hY29uZGEzL2VudnMvNDc1Ni9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBpoD4wMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaD99lH2UKGgaaDVoKGg2aCl9lGgrTmgsTmgtaBtoLk5oL2gxRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRl2UaEh9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:41 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T8103", "Python": "3.12.3", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.1", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x11f55f240>", "_build": "<function SACPolicy._build at 0x11f55f880>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x11f55f920>", "reset_noise": "<function SACPolicy.reset_noise at 0x11f55f9c0>", "make_actor": "<function SACPolicy.make_actor at 0x11f55fa60>", "make_critic": "<function SACPolicy.make_critic at 0x11f55fb00>", "forward": "<function SACPolicy.forward at 0x11f55fba0>", "_predict": "<function SACPolicy._predict at 0x11f55fc40>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x11f55fce0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x11f5786c0>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 975000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718033158578114641, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVTQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbYAAAAAAAAAIsIIRAUDOE/O7C9Q7BR7j/VNfthvbSyPzyXVpvJ7bO/lpQiAKhL0z8D18h+CUbhvxWlo6uMvOA/FIRu+MXL4L9fhnvbErfgvw6xZ2dVQ+E/sqde5gWw4L8hLofHoszgv9uqvWEFs+A/JCVXXeTsFUDdwjvn5+P1P8hct10pWOa//2kCer+n/b8JnopGCvLxPyWcLDIYsPC/uF7qCg8W4D9GEfMuy6mKP/SL0A8F93e/JCaiknEVeT/Ov4LgNiv0v2rmR+LxdHG/VCNSBpANiz/RP4Nzf3gEwJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsbhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVTQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbYAAAAAAAAANdz/rVocOI/TCP9PzEW7j8JmtfHbs20P4sWpj/mDrG/CxKqlxu81D9eKqDgtlThv4mBY4Niq+A/dMjM7ZfI4L9z2UeORLvgv6DD+Gup8Nw/YcnKGpOt4L8+dx06QNTgvzeSjp0Xa+M/kHYDb5KfFUCuHXM4YeDtP/KzQtAV7+i/8NEW4/beir8QOUIqevntv2a6GaOEVOm/uol/bG0OBcBWN6ttO4O2P3skrpSJfWQ/MQYHE87JUz/0yZSSF2kVQHhwoXjkjhm/QtJBbSrCUD85fNoChIXGv5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsbhpSMAUOUdJRSlC4="}, "_episode_num": 1206, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.02500100000000005, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKyG15GBnSSMAWyUTdACjAF0lEdAu0BWnjyWiXV9lChoBkdAtKDgQUYbbWgHTegDaAhHQLtHmssQNCt1fZQoaAZHQLU3dGX5WR1oB03oA2gIR0C7TtvSMLncdX2UKGgGR0C0ePtEPUayaAdN6ANoCEdAu1YcJiRW93V9lChoBkdAtEiDUy57PmgHTegDaAhHQLtdcTkhib51fZQoaAZHQLThbIFeOXFoB03oA2gIR0C7aN/A9FF2dX2UKGgGR0C1TgP9pAUtaAdN6ANoCEdAu3AlEa2nbnV9lChoBkdAs8x9p35eq2gHTegDaAhHQLt3Z2xptaZ1fZQoaAZHQLYTPCZnctZoB03oA2gIR0C7fq62SdOJdX2UKGgGR0C1k6XmRvFWaAdN6ANoCEdAu4XtDSgGr3V9lChoBkdAtXuClZX+2mgHTegDaAhHQLuRQ0xubZx1fZQoaAZHQLHzoszVMEloB01qA2gIR0C7l5RyfcvedX2UKGgGR0C1Mf78m8dxaAdN6ANoCEdAu57eFIuoP3V9lChoBkdAtFqEeGO+7GgHTegDaAhHQLumHmWMS9N1fZQoaAZHQLR6mh3JPqNoB03oA2gIR0C7rWuqBErodX2UKGgGR0C0lnilzltCaAdN6ANoCEdAu7hL5DZ13nV9lChoBkdAtSGIvmHP/2gHTegDaAhHQLu/mxFAmiR1fZQoaAZHQLS5+rbQC0ZoB03oA2gIR0C7xtdjkMkQdX2UKGgGR0C1oWGh/RVqaAdN6ANoCEdAu84UlD4QBnV9lChoBkdAtWxwEV32VWgHTegDaAhHQLvVU/d69kB1fZQoaAZHQLN2M+OOsDJoB03oA2gIR0C74LpNKyv+dX2UKGgGR0C0sFd5IH1OaAdN6ANoCEdAu+gDtIClrXV9lChoBkdAtEu5rKvFFWgHTdkDaAhHQLvvKtXgccV1fZQoaAZHQLYMaqD9OypoB03oA2gIR0C79m+uvECOdX2UKGgGR0C0TEfw3HaOaAdN6ANoCEdAu/3L8qFyrHV9lChoBkdAtMbnLr5ZbWgHTegDaAhHQLwJAyxiXpp1fZQoaAZHQLQ7W6y0KJFoB03oA2gIR0C8EEHT7VJ+dX2UKGgGR0C0jUCfxtpFaAdN6ANoCEdAvBeJggHNYHV9lChoBkdAtL4hCMPz4GgHTegDaAhHQLwexaRp1zR1fZQoaAZHQLTHD7mdRSBoB03oA2gIR0C8JgCy2QXAdX2UKGgGR0C06N9fTkQxaAdN6ANoCEdAvDFfmbLEDXV9lChoBkdAtN6lEx7AtWgHTegDaAhHQLw4qfNRm9R1fZQoaAZHQLSJwV7Qb+9oB03oA2gIR0C8P+mxQizLdX2UKGgGR0C0+35oXbdraAdN6ANoCEdAvEc5OwgTy3V9lChoBkdAs+sbi83+/GgHTegDaAhHQLxOgv2oNut1fZQoaAZHQLSFiuKXOW1oB03oA2gIR0C8WfAbuMMrdX2UKGgGR0CzYWavaDf4aAdN6ANoCEdAvGExh3JPqXV9lChoBkdAtIBrlRxcV2gHTegDaAhHQLxobDsMRYl1fZQoaAZHQJ32fKDCgsdoB01+AWgIR0C8azIkzGgjdX2UKGgGR0Cixk4qPOpsaAdNvQFoCEdAvG5tAD7qIXV9lChoBkdAo54AQvpQlGgHTegDaAhHQLx1vGIbfgt1fZQoaAZHQLSHjQPZqVRoB03oA2gIR0C8gSkFW4mUdX2UKGgGR0C06Whc7hegaAdN6ANoCEdAvIhpUOuq3nV9lChoBkdAtFbX2oNutWgHTegDaAhHQLyPuq1w5vN1fZQoaAZHQLVZJy9mHxloB03oA2gIR0C8lw4gzP8idX2UKGgGR0C13ecZgogFaAdN6ANoCEdAvJ5ZrFfiP3V9lChoBkdAtabJO58Sf2gHTegDaAhHQLypm75mAb11fZQoaAZHQLYBQiblRxdoB03oA2gIR0C8sObhrFfidX2UKGgGR0C1OQNFvybyaAdN6ANoCEdAvLgok+otMHV9lChoBkdAqBsNr9ETg2gHTTMCaAhHQLy8Pehf0Ep1fZQoaAZHQLU4swztTk1oB03oA2gIR0C8w3yyIHkcdX2UKGgGR0C05qksasIWaAdN6ANoCEdAvMrIPuogm3V9lChoBkdAaDqfh/Aj6mgHSzhoCEdAvMswVXV9W3V9lChoBkdAtN+cGLUCrGgHTegDaAhHQLzWnYW+GoJ1fZQoaAZHQLO2PndO6/ZoB03oA2gIR0C83ejCk43ndX2UKGgGR0C1XYD544ZNaAdN6ANoCEdAvOU8s+V1OnV9lChoBkdAtNhUD0UXYWgHTegDaAhHQLzskDEm6Xl1fZQoaAZHQLXSB6bvw3JoB03oA2gIR0C8883Yg7o0dX2UKGgGR0C0Mopswco6aAdN6ANoCEdAvP8azru6VnV9lChoBkdAtK6B1q33H2gHTegDaAhHQL0GZgflp491fZQoaAZHQLXca4UeuFJoB03oA2gIR0C9DaVejVQRdX2UKGgGR0C1PBkG/vfCaAdN6ANoCEdAvRT5ul41P3V9lChoBkdAtH0QibDuSmgHTegDaAhHQL0cNu1F6Rh1fZQoaAZHQFopnHeaa1FoB0sqaAhHQL0chfVZs9B1fZQoaAZHQLUql5ZKWcBoB03oA2gIR0C9J1xSHdoGdX2UKGgGR0C1eAEL2HtXaAdN6ANoCEdAvS6w7T2FnXV9lChoBkdAtUKr1XeWOmgHTegDaAhHQL019rqt5lh1fZQoaAZHQLT/rjYqXnhoB03oA2gIR0C9PTzt5UtJdX2UKGgGR0C0HlO2Zy+6aAdN6ANoCEdAvUSGJl8PWnV9lChoBkdAs55Ul9jPOmgHTegDaAhHQL1P2RJVbRp1fZQoaAZHQLWfmMY/FBJoB03oA2gIR0C9Vxp6Y3NtdX2UKGgGR0C0rQbwrlNlaAdN6ANoCEdAvV5bsMRYinV9lChoBkdAtaYb8Lron2gHTegDaAhHQL1lpgQYk3V1fZQoaAZHQLUdCeANG3FoB03oA2gIR0C9bOek1uR+dX2UKGgGR0C2A9Ma0hNeaAdN6ANoCEdAvXhR7ngYQHV9lChoBkdAtO8GHZbpvGgHTegDaAhHQL1/qJPZZjh1fZQoaAZHQLPw6as6q81oB03oA2gIR0C9hu+RLbpNdX2UKGgGR0C0aMD6JqIraAdN6ANoCEdAvY4wzxgAqHV9lChoBkdAtXi555Z8r2gHTegDaAhHQL2Vc3NcGC91fZQoaAZHQLUmXzw+dLBoB03oA2gIR0C9oNRYmsvJdX2UKGgGR0C1Us+5WilBaAdN6ANoCEdAvagRVBD5TXV9lChoBkdAtcx0MH8jzWgHTegDaAhHQL2vUC53C9B1fZQoaAZHQLR7ww3o9s9oB03oA2gIR0C9towRf4RFdX2UKGgGR0C0xi2bwz+FaAdN6ANoCEdAvb3XzPKMenV9lChoBkdAtgInVH4GlmgHTegDaAhHQL3JWTwlSjx1fZQoaAZHQLUksT3qRlpoB03oA2gIR0C90JovN/vwdX2UKGgGR0C1Vp2EoOQRaAdN6ANoCEdAvdfYuHvc8HV9lChoBkdAtgJOPOpsGmgHTegDaAhHQL3fH81Gb1B1fZQoaAZHQLTLodUsFt9oB03oA2gIR0C95l/ra/RFdX2UKGgGR0C1d4bNnoPkaAdN6ANoCEdAvfGsHs1KoXV9lChoBkdAtP3dhfBvaWgHTegDaAhHQL3473mmtQt1fZQoaAZHQLSSlbBXS0BoB03oA2gIR0C+AC3erMkhdX2UKGgGR0C1TbJBX0XhaAdN6ANoCEdAvgdtTFVDKHV9lChoBkdAta8q8Yht+GgHTegDaAhHQL4Ovz4UN8V1fZQoaAZHQK+CfVrhzeZoB038AmgIR0C+GIMFUyYYdX2UKGgGR0C1bb71h9b5aAdN6ANoCEdAvh/CkpI+XHV9lChoBkdAd/bDCgsbvWgHS15oCEdAviBwMfA9FHV9lChoBkdAtVY+U8mrsGgHTegDaAhHQL4nq+dbxEx1fZQoaAZHQLPSBC+lCTloB03oA2gIR0C+LufSMLncdX2UKGgGR0C2FCGvwEyMaAdN6ANoCEdAvjYxl+Vkc3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 964999, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x11f4d80e0>", "add": "<function ReplayBuffer.add at 0x11f4d8220>", "sample": "<function ReplayBuffer.sample at 0x11f4d82c0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x11f4d8360>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x11f4d8400>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x11f4ccf80>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLG4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSxuFlGgZdJRSlIwGX3NoYXBllEsbhZSMA2xvd5RoESiW2AAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLG4WUaBl0lFKUjARoaWdolGgRKJbYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sbhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False]", "_shape": [27], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVkwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEWlBvnGFOOMULmYSHcqgWqIAjANpbmOUihC5QnmGyi5oMvK+DFticy9DdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6gMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMXi9Vc2Vycy9qcmVuL2FuYWNvbmRhMy9lbnZzLzQ3NTYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYUMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxeL1VzZXJzL2pyZW4vYW5hY29uZGEzL2VudnMvNDc1Ni9saWIvcHl0aG9uMy4xMi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBpoD4wMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaD99lH2UKGgaaDVoKGg2aCl9lGgrTmgsTmgtaBtoLk5oL2gxRz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRl2UaEh9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:41 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T8103", "Python": "3.12.3", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.1", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 4867.7374702, "std_reward": 1756.0175745657139, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-10T12:04:12.665007"}
|