Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 794.18 +/- 281.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b8946122c48671f62853fe5424f2b932c0abcc602bd06b1895c66e1cf1a7883
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f46ec82e1f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46ec82e280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46ec82e310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46ec82e3a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f46ec82e430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f46ec82e4c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46ec82e550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46ec82e5e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f46ec82e670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46ec82e700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46ec82e790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46ec82e820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f46ec82b270>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674243273452361231,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIoRoz9+3k2+aiQ4P9EeTb5JfJA+ylEJQP3Wqz963Vi/ycJeP6VUz74FpR6+ljDRusS2sj42L8g+h523v1RXiD5dB7E/w712vzTKzT41y1w/3q8nvyzWAcAgvhg/kfqSvHlfYL8heBI/AQ/CPraxLT/F0k0/wd2wvskEPz+n3+m/5DjhP71Y6j+1Q8A+9dmfPUINDD8F14VAA2WNvm9p4b+ripA/CEZXQPIdD7/0G8C/pOTIvUEGR0AZG0a+SUqgPzLAzT/CRY46mm6ZPxcmUL95X2C/IXgSPwEPwj62sS0/EzcWPoSNCL/QWkI/W25jP3x94z6f2MS61PEUPSkMUL/4LVk/Ew5bvqwopj9sBA09uHPAvzpz/z7JlzE/liA5P9jfpj4/hVs/PO4EP9rNS79iBRs/D4UdQB/rjr/hcqE/5QqSPyO4378BD8I+Rqe8vx7gEj/TlBfA98UewLc6sD8g/gFAilHOPu9qeD9FAwO/JuZHP63aKL4JYiu/PFhAvzFdoT+Uh3y77AfgPSvIfT9xkaI/zIcCv3h0Az+nzzi+/79gPc+Mr7+uhsU+uu0YPnlfYL8heBI/AQ/CPraxLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADOBTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh8qBPQAAAAD4lt2/AAAAAIAIar0AAAAAK6b+PwAAAACDGOu9AAAAAKdi2T8AAAAAtWUCvgAAAAC92N6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3k4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNOVgj0AAAAA0BT/vwAAAACag0K8AAAAAJqe6D8AAAAAdcjrPQAAAAAJLvs/AAAAANipCD4AAAAACUnpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJYzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzro08AAAAAEpr3b8AAAAA5hpMvQAAAABxGPM/AAAAAJ2dtbwAAAAAfC35PwAAAABFxQa+AAAAAPZs3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZmpWzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV5OmvQAAAABXWv2/AAAAAIC+wz0AAAAAh+jgPwAAAABHhHu9AAAAAOBB+T8AAAAA4sfxPQAAAABHdd6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQYf1TR6WyMAWyUTegDjAF0lEdArRr9qFh5PnV9lChoBkdAl0bORgZ0jmgHTegDaAhHQK0cZSG8Emp1fZQoaAZHQJcVBGz8gp1oB03oA2gIR0CtHR78ejmCdX2UKGgGR0CRy5nWrfcfaAdN6ANoCEdArSSIymALA3V9lChoBkdAkbcv6sQumWgHTegDaAhHQK0nnz19ORF1fZQoaAZHQJL9O3BpHqhoB03oA2gIR0CtKQgvL5h0dX2UKGgGR0CUHgKfnOjZaAdN6ANoCEdArSnBYaHbh3V9lChoBkdAk36DjaPCEmgHTegDaAhHQK0xKYLsrup1fZQoaAZHQHtZwVwgkkdoB03oA2gIR0CtNC+h4+r3dX2UKGgGR0CSr4QZn+Q2aAdN6ANoCEdArTWbCFbml3V9lChoBkdAh3P3cQAdXGgHTegDaAhHQK02Tslb/wR1fZQoaAZHQIVn81EVnEloB03oA2gIR0CtPcob4rSWdX2UKGgGR0CUSGEqDsdDaAdN6ANoCEdArUDgGhVU/HV9lChoBkdAkdioAbQ1JmgHTegDaAhHQK1CSjHGS6l1fZQoaAZHQJOQdQGfPHFoB03oA2gIR0CtQv8PnSv1dX2UKGgGR0CUWTIUahpQaAdN6ANoCEdArUpQbdadMHV9lChoBkdAk5OcGPgeimgHTegDaAhHQK1NY11GLDR1fZQoaAZHQJHpzb48EFJoB03oA2gIR0CtTr7L+xW1dX2UKGgGR0CWA5XT3IuHaAdN6ANoCEdArU+A7eVLSXV9lChoBkdAkgbMdo3712gHTegDaAhHQK1W6nMMZxd1fZQoaAZHQIyf7m8ujAVoB03oA2gIR0CtWgk3sHB2dX2UKGgGR0CRhSHpr1ujaAdN6ANoCEdArVtnzMA3k3V9lChoBkdAcba3TNMXamgHTegDaAhHQK1cJqWTouB1fZQoaAZHQJBh7Pnjhk1oB03oA2gIR0CtY3vz4DcNdX2UKGgGR0CYQWVR1oxpaAdN6ANoCEdArWafVsk6cXV9lChoBkdAiuuqCHymRGgHTegDaAhHQK1oCdQO4G51fZQoaAZHQJNIEmqo60ZoB03oA2gIR0CtaL6Df3vhdX2UKGgGR0CM9qHQhOgyaAdN6ANoCEdArXAbqGDcunV9lChoBkdAh8PuuJUHZGgHTegDaAhHQK1zNJe3QUp1fZQoaAZHQJLM57CzkZJoB03oA2gIR0CtdJxPoFFEdX2UKGgGR0BypHO7g88taAdN6ANoCEdArXVXUjLSu3V9lChoBkdAd1kQDFId2mgHTegDaAhHQK184zLwF1V1fZQoaAZHQHlL0zGgi/xoB03oA2gIR0Ctf/+nhsIndX2UKGgGR0B6eNMPBi1BaAdN6ANoCEdArYFoKlYU4HV9lChoBkdAdOsIRAbADmgHTegDaAhHQK2CIhUR3/x1fZQoaAZHQHFrT/hl18toB03oA2gIR0CtiYB/7SApdX2UKGgGR0CTiVDjBEa3aAdN6ANoCEdArYyzilzltHV9lChoBkdAkzppbY9PlGgHTegDaAhHQK2OGF3Y+St1fZQoaAZHQJI2cJPZZjhoB03oA2gIR0CtjtQNb1RMdX2UKGgGR0CUZ3rxAjY7aAdN6ANoCEdArZY+GZeAu3V9lChoBkdAkmlPfKp1imgHTegDaAhHQK2ZW4LkS291fZQoaAZHQJK0cFxGUfRoB03oA2gIR0CtmsCWeHzpdX2UKGgGR0CF4Rgl4TsZaAdN6ANoCEdArZuApON5t3V9lChoBkdAlfhCCOFQEmgHTegDaAhHQK2i4kUKzAx1fZQoaAZHQJAFsPVd5Y5oB03oA2gIR0Ctpj/y5I6KdX2UKGgGR0CP9+ouwosqaAdN6ANoCEdAraer26ClJ3V9lChoBkdAk3TT3RG+bmgHTegDaAhHQK2oYUwBYFJ1fZQoaAZHQHP7Sw8nuzBoB03oA2gIR0Ctr85zgdfcdX2UKGgGR0CRWiZof0VaaAdN6ANoCEdArbLzAeq7y3V9lChoBkdAllZ3aJyhjGgHTegDaAhHQK20Zw4sEq51fZQoaAZHQI1Gee8PFvRoB03oA2gIR0CttSHBtUGWdX2UKGgGR0CThyrWiDdyaAdN6ANoCEdArbyqTUy57XV9lChoBkdAkiovY4ACGWgHTegDaAhHQK2/07btZ3d1fZQoaAZHQI/JbKRuCPJoB03oA2gIR0CtwTpTER8MdX2UKGgGR0CSele2NNrTaAdN6ANoCEdArcH5MFlkH3V9lChoBkdAk0SrxZuAJGgHTegDaAhHQK3JZix3V091fZQoaAZHQI6AglF+d9VoB03oA2gIR0CtzIcgIQe4dX2UKGgGR0CRPPhqTKT0aAdN6ANoCEdArc4DFQ2uPnV9lChoBkdAl/KHvhIe5mgHTegDaAhHQK3OuD8Lrop1fZQoaAZHQJSeBiKBNEhoB03oA2gIR0Ct1gSN4qwydX2UKGgGR0CTNKl67dzoaAdN6ANoCEdArdk2l67dznV9lChoBkdAkc39BWxQi2gHTegDaAhHQK3al9x6v7p1fZQoaAZHQJMLLtgKF7FoB03oA2gIR0Ct205n+Q2ddX2UKGgGR0CNq0Nd7fHhaAdN6ANoCEdAreK435vcanV9lChoBkdAhrUj3Ehq02gHTegDaAhHQK3ly0oBq9J1fZQoaAZHQJZ97JiiItVoB03oA2gIR0Ct5ymV7hNudX2UKGgGR0CN4gbDMvAXaAdN6ANoCEdArefkUKzAvnV9lChoBkdAlrn7jo6jnGgHTegDaAhHQK3vQmtQsPJ1fZQoaAZHQJdtiJm/WUdoB03oA2gIR0Ct8mPZIxxldX2UKGgGR0CScEDZUT+OaAdN6ANoCEdArfPOuRs/IXV9lChoBkdAkiszPOY6XGgHTegDaAhHQK30hFId2gZ1fZQoaAZHQJaZ9qdpZfVoB03oA2gIR0Ct+9geaKDTdX2UKGgGR0CUvTYZl4C7aAdN6ANoCEdArf7i7/XGwXV9lChoBkdAlkg3L/0dzWgHTegDaAhHQK4AT5dnkDJ1fZQoaAZHQJDclxo7FKloB03oA2gIR0CuAQuby6MBdX2UKGgGR0CVYvzeGfwraAdN6ANoCEdArghaVpsXSHV9lChoBkdAky3UvboKUmgHTegDaAhHQK4LjrLyMDR1fZQoaAZHQJJ5q8Empl1oB03oA2gIR0CuDO+zdDYzdX2UKGgGR0COtzeUILPVaAdN6ANoCEdArg2vOQhfSnV9lChoBkdAkYstNN8E3mgHTegDaAhHQK4VCngpBop1fZQoaAZHQIzPMl/pdKNoB03oA2gIR0CuGC+FlCkXdX2UKGgGR0CHEZf8dgfEaAdN6ANoCEdArhmUDlo11nV9lChoBkdAkApZ0GNaQmgHTegDaAhHQK4aTVCHARF1fZQoaAZHQHnyUyk9ECxoB03hAWgIR0CuHlFQl8gIdX2UKGgGR0CLrc10knkUaAdN6ANoCEdAriNoN7SiNHV9lChoBkdAkHZki6g/T2gHTegDaAhHQK4qOhN/OMV1fZQoaAZHQJH+CFZgXuVoB03oA2gIR0CuKu5vLowFdX2UKGgGR0CMHKFJxvNvaAdN6ANoCEdAri70vAXVLHV9lChoBkdAkN5rsv7FbWgHTegDaAhHQK4ydVOKwZB1fZQoaAZHQJRDM0zj3mFoB03oA2gIR0CuNwJNCZ4OdX2UKGgGR0CO/tar3j+8aAdN6ANoCEdArje9n5BToHV9lChoBkdAb7dsQd0aImgHTegDaAhHQK47rvlU6xR1fZQoaAZHQJIWoRnOB19oB03oA2gIR0CuPxzf779AdX2UKGgGR0CQYXHVf/m1aAdN6ANoCEdArkOqM72crnV9lChoBkdAknW67VawEGgHTegDaAhHQK5EXNHpbEB1fZQoaAZHQJNf+ij+JgtoB03oA2gIR0CuSIa4Ds+ndX2UKGgGR0BoeWykbgjyaAdN+wFoCEdArko6ebutwXV9lChoBkdAkP6kFr2xp2gHTegDaAhHQK5L+IcinpB1fZQoaAZHQHtLQuEmICVoB03oA2gIR0CuUSQUpNKzdX2UKGgGR0CSZlearmyPaAdN6ANoCEdArlUK8Hv+fnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6f5ba189d5eda07fd1426b34cef0357d124c2dd3e03a5bc4bab30baf97ed85
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f731f0352278d46a12d8316dc7b56f642535c95864c220612849e1589d0a5ab
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46ec82e1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46ec82e280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46ec82e310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46ec82e3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f46ec82e430>", "forward": "<function ActorCriticPolicy.forward at 0x7f46ec82e4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46ec82e550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46ec82e5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46ec82e670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46ec82e700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46ec82e790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46ec82e820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46ec82b270>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674243273452361231, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIoRoz9+3k2+aiQ4P9EeTb5JfJA+ylEJQP3Wqz963Vi/ycJeP6VUz74FpR6+ljDRusS2sj42L8g+h523v1RXiD5dB7E/w712vzTKzT41y1w/3q8nvyzWAcAgvhg/kfqSvHlfYL8heBI/AQ/CPraxLT/F0k0/wd2wvskEPz+n3+m/5DjhP71Y6j+1Q8A+9dmfPUINDD8F14VAA2WNvm9p4b+ripA/CEZXQPIdD7/0G8C/pOTIvUEGR0AZG0a+SUqgPzLAzT/CRY46mm6ZPxcmUL95X2C/IXgSPwEPwj62sS0/EzcWPoSNCL/QWkI/W25jP3x94z6f2MS61PEUPSkMUL/4LVk/Ew5bvqwopj9sBA09uHPAvzpz/z7JlzE/liA5P9jfpj4/hVs/PO4EP9rNS79iBRs/D4UdQB/rjr/hcqE/5QqSPyO4378BD8I+Rqe8vx7gEj/TlBfA98UewLc6sD8g/gFAilHOPu9qeD9FAwO/JuZHP63aKL4JYiu/PFhAvzFdoT+Uh3y77AfgPSvIfT9xkaI/zIcCv3h0Az+nzzi+/79gPc+Mr7+uhsU+uu0YPnlfYL8heBI/AQ/CPraxLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADOBTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh8qBPQAAAAD4lt2/AAAAAIAIar0AAAAAK6b+PwAAAACDGOu9AAAAAKdi2T8AAAAAtWUCvgAAAAC92N6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3k4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNOVgj0AAAAA0BT/vwAAAACag0K8AAAAAJqe6D8AAAAAdcjrPQAAAAAJLvs/AAAAANipCD4AAAAACUnpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJYzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzro08AAAAAEpr3b8AAAAA5hpMvQAAAABxGPM/AAAAAJ2dtbwAAAAAfC35PwAAAABFxQa+AAAAAPZs3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZmpWzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV5OmvQAAAABXWv2/AAAAAIC+wz0AAAAAh+jgPwAAAABHhHu9AAAAAOBB+T8AAAAA4sfxPQAAAABHdd6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQYf1TR6WyMAWyUTegDjAF0lEdArRr9qFh5PnV9lChoBkdAl0bORgZ0jmgHTegDaAhHQK0cZSG8Emp1fZQoaAZHQJcVBGz8gp1oB03oA2gIR0CtHR78ejmCdX2UKGgGR0CRy5nWrfcfaAdN6ANoCEdArSSIymALA3V9lChoBkdAkbcv6sQumWgHTegDaAhHQK0nnz19ORF1fZQoaAZHQJL9O3BpHqhoB03oA2gIR0CtKQgvL5h0dX2UKGgGR0CUHgKfnOjZaAdN6ANoCEdArSnBYaHbh3V9lChoBkdAk36DjaPCEmgHTegDaAhHQK0xKYLsrup1fZQoaAZHQHtZwVwgkkdoB03oA2gIR0CtNC+h4+r3dX2UKGgGR0CSr4QZn+Q2aAdN6ANoCEdArTWbCFbml3V9lChoBkdAh3P3cQAdXGgHTegDaAhHQK02Tslb/wR1fZQoaAZHQIVn81EVnEloB03oA2gIR0CtPcob4rSWdX2UKGgGR0CUSGEqDsdDaAdN6ANoCEdArUDgGhVU/HV9lChoBkdAkdioAbQ1JmgHTegDaAhHQK1CSjHGS6l1fZQoaAZHQJOQdQGfPHFoB03oA2gIR0CtQv8PnSv1dX2UKGgGR0CUWTIUahpQaAdN6ANoCEdArUpQbdadMHV9lChoBkdAk5OcGPgeimgHTegDaAhHQK1NY11GLDR1fZQoaAZHQJHpzb48EFJoB03oA2gIR0CtTr7L+xW1dX2UKGgGR0CWA5XT3IuHaAdN6ANoCEdArU+A7eVLSXV9lChoBkdAkgbMdo3712gHTegDaAhHQK1W6nMMZxd1fZQoaAZHQIyf7m8ujAVoB03oA2gIR0CtWgk3sHB2dX2UKGgGR0CRhSHpr1ujaAdN6ANoCEdArVtnzMA3k3V9lChoBkdAcba3TNMXamgHTegDaAhHQK1cJqWTouB1fZQoaAZHQJBh7Pnjhk1oB03oA2gIR0CtY3vz4DcNdX2UKGgGR0CYQWVR1oxpaAdN6ANoCEdArWafVsk6cXV9lChoBkdAiuuqCHymRGgHTegDaAhHQK1oCdQO4G51fZQoaAZHQJNIEmqo60ZoB03oA2gIR0CtaL6Df3vhdX2UKGgGR0CM9qHQhOgyaAdN6ANoCEdArXAbqGDcunV9lChoBkdAh8PuuJUHZGgHTegDaAhHQK1zNJe3QUp1fZQoaAZHQJLM57CzkZJoB03oA2gIR0CtdJxPoFFEdX2UKGgGR0BypHO7g88taAdN6ANoCEdArXVXUjLSu3V9lChoBkdAd1kQDFId2mgHTegDaAhHQK184zLwF1V1fZQoaAZHQHlL0zGgi/xoB03oA2gIR0Ctf/+nhsIndX2UKGgGR0B6eNMPBi1BaAdN6ANoCEdArYFoKlYU4HV9lChoBkdAdOsIRAbADmgHTegDaAhHQK2CIhUR3/x1fZQoaAZHQHFrT/hl18toB03oA2gIR0CtiYB/7SApdX2UKGgGR0CTiVDjBEa3aAdN6ANoCEdArYyzilzltHV9lChoBkdAkzppbY9PlGgHTegDaAhHQK2OGF3Y+St1fZQoaAZHQJI2cJPZZjhoB03oA2gIR0CtjtQNb1RMdX2UKGgGR0CUZ3rxAjY7aAdN6ANoCEdArZY+GZeAu3V9lChoBkdAkmlPfKp1imgHTegDaAhHQK2ZW4LkS291fZQoaAZHQJK0cFxGUfRoB03oA2gIR0CtmsCWeHzpdX2UKGgGR0CF4Rgl4TsZaAdN6ANoCEdArZuApON5t3V9lChoBkdAlfhCCOFQEmgHTegDaAhHQK2i4kUKzAx1fZQoaAZHQJAFsPVd5Y5oB03oA2gIR0Ctpj/y5I6KdX2UKGgGR0CP9+ouwosqaAdN6ANoCEdAraer26ClJ3V9lChoBkdAk3TT3RG+bmgHTegDaAhHQK2oYUwBYFJ1fZQoaAZHQHP7Sw8nuzBoB03oA2gIR0Ctr85zgdfcdX2UKGgGR0CRWiZof0VaaAdN6ANoCEdArbLzAeq7y3V9lChoBkdAllZ3aJyhjGgHTegDaAhHQK20Zw4sEq51fZQoaAZHQI1Gee8PFvRoB03oA2gIR0CttSHBtUGWdX2UKGgGR0CThyrWiDdyaAdN6ANoCEdArbyqTUy57XV9lChoBkdAkiovY4ACGWgHTegDaAhHQK2/07btZ3d1fZQoaAZHQI/JbKRuCPJoB03oA2gIR0CtwTpTER8MdX2UKGgGR0CSele2NNrTaAdN6ANoCEdArcH5MFlkH3V9lChoBkdAk0SrxZuAJGgHTegDaAhHQK3JZix3V091fZQoaAZHQI6AglF+d9VoB03oA2gIR0CtzIcgIQe4dX2UKGgGR0CRPPhqTKT0aAdN6ANoCEdArc4DFQ2uPnV9lChoBkdAl/KHvhIe5mgHTegDaAhHQK3OuD8Lrop1fZQoaAZHQJSeBiKBNEhoB03oA2gIR0Ct1gSN4qwydX2UKGgGR0CTNKl67dzoaAdN6ANoCEdArdk2l67dznV9lChoBkdAkc39BWxQi2gHTegDaAhHQK3al9x6v7p1fZQoaAZHQJMLLtgKF7FoB03oA2gIR0Ct205n+Q2ddX2UKGgGR0CNq0Nd7fHhaAdN6ANoCEdAreK435vcanV9lChoBkdAhrUj3Ehq02gHTegDaAhHQK3ly0oBq9J1fZQoaAZHQJZ97JiiItVoB03oA2gIR0Ct5ymV7hNudX2UKGgGR0CN4gbDMvAXaAdN6ANoCEdArefkUKzAvnV9lChoBkdAlrn7jo6jnGgHTegDaAhHQK3vQmtQsPJ1fZQoaAZHQJdtiJm/WUdoB03oA2gIR0Ct8mPZIxxldX2UKGgGR0CScEDZUT+OaAdN6ANoCEdArfPOuRs/IXV9lChoBkdAkiszPOY6XGgHTegDaAhHQK30hFId2gZ1fZQoaAZHQJaZ9qdpZfVoB03oA2gIR0Ct+9geaKDTdX2UKGgGR0CUvTYZl4C7aAdN6ANoCEdArf7i7/XGwXV9lChoBkdAlkg3L/0dzWgHTegDaAhHQK4AT5dnkDJ1fZQoaAZHQJDclxo7FKloB03oA2gIR0CuAQuby6MBdX2UKGgGR0CVYvzeGfwraAdN6ANoCEdArghaVpsXSHV9lChoBkdAky3UvboKUmgHTegDaAhHQK4LjrLyMDR1fZQoaAZHQJJ5q8Empl1oB03oA2gIR0CuDO+zdDYzdX2UKGgGR0COtzeUILPVaAdN6ANoCEdArg2vOQhfSnV9lChoBkdAkYstNN8E3mgHTegDaAhHQK4VCngpBop1fZQoaAZHQIzPMl/pdKNoB03oA2gIR0CuGC+FlCkXdX2UKGgGR0CHEZf8dgfEaAdN6ANoCEdArhmUDlo11nV9lChoBkdAkApZ0GNaQmgHTegDaAhHQK4aTVCHARF1fZQoaAZHQHnyUyk9ECxoB03hAWgIR0CuHlFQl8gIdX2UKGgGR0CLrc10knkUaAdN6ANoCEdAriNoN7SiNHV9lChoBkdAkHZki6g/T2gHTegDaAhHQK4qOhN/OMV1fZQoaAZHQJH+CFZgXuVoB03oA2gIR0CuKu5vLowFdX2UKGgGR0CMHKFJxvNvaAdN6ANoCEdAri70vAXVLHV9lChoBkdAkN5rsv7FbWgHTegDaAhHQK4ydVOKwZB1fZQoaAZHQJRDM0zj3mFoB03oA2gIR0CuNwJNCZ4OdX2UKGgGR0CO/tar3j+8aAdN6ANoCEdArje9n5BToHV9lChoBkdAb7dsQd0aImgHTegDaAhHQK47rvlU6xR1fZQoaAZHQJIWoRnOB19oB03oA2gIR0CuPxzf779AdX2UKGgGR0CQYXHVf/m1aAdN6ANoCEdArkOqM72crnV9lChoBkdAknW67VawEGgHTegDaAhHQK5EXNHpbEB1fZQoaAZHQJNf+ij+JgtoB03oA2gIR0CuSIa4Ds+ndX2UKGgGR0BoeWykbgjyaAdN+wFoCEdArko6ebutwXV9lChoBkdAkP6kFr2xp2gHTegDaAhHQK5L+IcinpB1fZQoaAZHQHtLQuEmICVoB03oA2gIR0CuUSQUpNKzdX2UKGgGR0CSZlearmyPaAdN6ANoCEdArlUK8Hv+fnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbcc3b0fab67d44a025e24f695f14b632ed9def9b46eb6667f83624a88264252
|
3 |
+
size 1121963
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 794.1754111307688, "std_reward": 281.70093313313254, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T20:32:28.781962"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08a232d53be9d958dd1c764398bfd07be092a057ea8782ffc35b39016bae84ca
|
3 |
+
size 2129
|