jrnold commited on
Commit
e353f48
1 Parent(s): 80baff7

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 794.18 +/- 281.70
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b8946122c48671f62853fe5424f2b932c0abcc602bd06b1895c66e1cf1a7883
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46ec82e1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46ec82e280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46ec82e310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46ec82e3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f46ec82e430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f46ec82e4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46ec82e550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46ec82e5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f46ec82e670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46ec82e700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46ec82e790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46ec82e820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f46ec82b270>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674243273452361231,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIoRoz9+3k2+aiQ4P9EeTb5JfJA+ylEJQP3Wqz963Vi/ycJeP6VUz74FpR6+ljDRusS2sj42L8g+h523v1RXiD5dB7E/w712vzTKzT41y1w/3q8nvyzWAcAgvhg/kfqSvHlfYL8heBI/AQ/CPraxLT/F0k0/wd2wvskEPz+n3+m/5DjhP71Y6j+1Q8A+9dmfPUINDD8F14VAA2WNvm9p4b+ripA/CEZXQPIdD7/0G8C/pOTIvUEGR0AZG0a+SUqgPzLAzT/CRY46mm6ZPxcmUL95X2C/IXgSPwEPwj62sS0/EzcWPoSNCL/QWkI/W25jP3x94z6f2MS61PEUPSkMUL/4LVk/Ew5bvqwopj9sBA09uHPAvzpz/z7JlzE/liA5P9jfpj4/hVs/PO4EP9rNS79iBRs/D4UdQB/rjr/hcqE/5QqSPyO4378BD8I+Rqe8vx7gEj/TlBfA98UewLc6sD8g/gFAilHOPu9qeD9FAwO/JuZHP63aKL4JYiu/PFhAvzFdoT+Uh3y77AfgPSvIfT9xkaI/zIcCv3h0Az+nzzi+/79gPc+Mr7+uhsU+uu0YPnlfYL8heBI/AQ/CPraxLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADOBTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh8qBPQAAAAD4lt2/AAAAAIAIar0AAAAAK6b+PwAAAACDGOu9AAAAAKdi2T8AAAAAtWUCvgAAAAC92N6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3k4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNOVgj0AAAAA0BT/vwAAAACag0K8AAAAAJqe6D8AAAAAdcjrPQAAAAAJLvs/AAAAANipCD4AAAAACUnpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJYzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzro08AAAAAEpr3b8AAAAA5hpMvQAAAABxGPM/AAAAAJ2dtbwAAAAAfC35PwAAAABFxQa+AAAAAPZs3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZmpWzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV5OmvQAAAABXWv2/AAAAAIC+wz0AAAAAh+jgPwAAAABHhHu9AAAAAOBB+T8AAAAA4sfxPQAAAABHdd6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQYf1TR6WyMAWyUTegDjAF0lEdArRr9qFh5PnV9lChoBkdAl0bORgZ0jmgHTegDaAhHQK0cZSG8Emp1fZQoaAZHQJcVBGz8gp1oB03oA2gIR0CtHR78ejmCdX2UKGgGR0CRy5nWrfcfaAdN6ANoCEdArSSIymALA3V9lChoBkdAkbcv6sQumWgHTegDaAhHQK0nnz19ORF1fZQoaAZHQJL9O3BpHqhoB03oA2gIR0CtKQgvL5h0dX2UKGgGR0CUHgKfnOjZaAdN6ANoCEdArSnBYaHbh3V9lChoBkdAk36DjaPCEmgHTegDaAhHQK0xKYLsrup1fZQoaAZHQHtZwVwgkkdoB03oA2gIR0CtNC+h4+r3dX2UKGgGR0CSr4QZn+Q2aAdN6ANoCEdArTWbCFbml3V9lChoBkdAh3P3cQAdXGgHTegDaAhHQK02Tslb/wR1fZQoaAZHQIVn81EVnEloB03oA2gIR0CtPcob4rSWdX2UKGgGR0CUSGEqDsdDaAdN6ANoCEdArUDgGhVU/HV9lChoBkdAkdioAbQ1JmgHTegDaAhHQK1CSjHGS6l1fZQoaAZHQJOQdQGfPHFoB03oA2gIR0CtQv8PnSv1dX2UKGgGR0CUWTIUahpQaAdN6ANoCEdArUpQbdadMHV9lChoBkdAk5OcGPgeimgHTegDaAhHQK1NY11GLDR1fZQoaAZHQJHpzb48EFJoB03oA2gIR0CtTr7L+xW1dX2UKGgGR0CWA5XT3IuHaAdN6ANoCEdArU+A7eVLSXV9lChoBkdAkgbMdo3712gHTegDaAhHQK1W6nMMZxd1fZQoaAZHQIyf7m8ujAVoB03oA2gIR0CtWgk3sHB2dX2UKGgGR0CRhSHpr1ujaAdN6ANoCEdArVtnzMA3k3V9lChoBkdAcba3TNMXamgHTegDaAhHQK1cJqWTouB1fZQoaAZHQJBh7Pnjhk1oB03oA2gIR0CtY3vz4DcNdX2UKGgGR0CYQWVR1oxpaAdN6ANoCEdArWafVsk6cXV9lChoBkdAiuuqCHymRGgHTegDaAhHQK1oCdQO4G51fZQoaAZHQJNIEmqo60ZoB03oA2gIR0CtaL6Df3vhdX2UKGgGR0CM9qHQhOgyaAdN6ANoCEdArXAbqGDcunV9lChoBkdAh8PuuJUHZGgHTegDaAhHQK1zNJe3QUp1fZQoaAZHQJLM57CzkZJoB03oA2gIR0CtdJxPoFFEdX2UKGgGR0BypHO7g88taAdN6ANoCEdArXVXUjLSu3V9lChoBkdAd1kQDFId2mgHTegDaAhHQK184zLwF1V1fZQoaAZHQHlL0zGgi/xoB03oA2gIR0Ctf/+nhsIndX2UKGgGR0B6eNMPBi1BaAdN6ANoCEdArYFoKlYU4HV9lChoBkdAdOsIRAbADmgHTegDaAhHQK2CIhUR3/x1fZQoaAZHQHFrT/hl18toB03oA2gIR0CtiYB/7SApdX2UKGgGR0CTiVDjBEa3aAdN6ANoCEdArYyzilzltHV9lChoBkdAkzppbY9PlGgHTegDaAhHQK2OGF3Y+St1fZQoaAZHQJI2cJPZZjhoB03oA2gIR0CtjtQNb1RMdX2UKGgGR0CUZ3rxAjY7aAdN6ANoCEdArZY+GZeAu3V9lChoBkdAkmlPfKp1imgHTegDaAhHQK2ZW4LkS291fZQoaAZHQJK0cFxGUfRoB03oA2gIR0CtmsCWeHzpdX2UKGgGR0CF4Rgl4TsZaAdN6ANoCEdArZuApON5t3V9lChoBkdAlfhCCOFQEmgHTegDaAhHQK2i4kUKzAx1fZQoaAZHQJAFsPVd5Y5oB03oA2gIR0Ctpj/y5I6KdX2UKGgGR0CP9+ouwosqaAdN6ANoCEdAraer26ClJ3V9lChoBkdAk3TT3RG+bmgHTegDaAhHQK2oYUwBYFJ1fZQoaAZHQHP7Sw8nuzBoB03oA2gIR0Ctr85zgdfcdX2UKGgGR0CRWiZof0VaaAdN6ANoCEdArbLzAeq7y3V9lChoBkdAllZ3aJyhjGgHTegDaAhHQK20Zw4sEq51fZQoaAZHQI1Gee8PFvRoB03oA2gIR0CttSHBtUGWdX2UKGgGR0CThyrWiDdyaAdN6ANoCEdArbyqTUy57XV9lChoBkdAkiovY4ACGWgHTegDaAhHQK2/07btZ3d1fZQoaAZHQI/JbKRuCPJoB03oA2gIR0CtwTpTER8MdX2UKGgGR0CSele2NNrTaAdN6ANoCEdArcH5MFlkH3V9lChoBkdAk0SrxZuAJGgHTegDaAhHQK3JZix3V091fZQoaAZHQI6AglF+d9VoB03oA2gIR0CtzIcgIQe4dX2UKGgGR0CRPPhqTKT0aAdN6ANoCEdArc4DFQ2uPnV9lChoBkdAl/KHvhIe5mgHTegDaAhHQK3OuD8Lrop1fZQoaAZHQJSeBiKBNEhoB03oA2gIR0Ct1gSN4qwydX2UKGgGR0CTNKl67dzoaAdN6ANoCEdArdk2l67dznV9lChoBkdAkc39BWxQi2gHTegDaAhHQK3al9x6v7p1fZQoaAZHQJMLLtgKF7FoB03oA2gIR0Ct205n+Q2ddX2UKGgGR0CNq0Nd7fHhaAdN6ANoCEdAreK435vcanV9lChoBkdAhrUj3Ehq02gHTegDaAhHQK3ly0oBq9J1fZQoaAZHQJZ97JiiItVoB03oA2gIR0Ct5ymV7hNudX2UKGgGR0CN4gbDMvAXaAdN6ANoCEdArefkUKzAvnV9lChoBkdAlrn7jo6jnGgHTegDaAhHQK3vQmtQsPJ1fZQoaAZHQJdtiJm/WUdoB03oA2gIR0Ct8mPZIxxldX2UKGgGR0CScEDZUT+OaAdN6ANoCEdArfPOuRs/IXV9lChoBkdAkiszPOY6XGgHTegDaAhHQK30hFId2gZ1fZQoaAZHQJaZ9qdpZfVoB03oA2gIR0Ct+9geaKDTdX2UKGgGR0CUvTYZl4C7aAdN6ANoCEdArf7i7/XGwXV9lChoBkdAlkg3L/0dzWgHTegDaAhHQK4AT5dnkDJ1fZQoaAZHQJDclxo7FKloB03oA2gIR0CuAQuby6MBdX2UKGgGR0CVYvzeGfwraAdN6ANoCEdArghaVpsXSHV9lChoBkdAky3UvboKUmgHTegDaAhHQK4LjrLyMDR1fZQoaAZHQJJ5q8Empl1oB03oA2gIR0CuDO+zdDYzdX2UKGgGR0COtzeUILPVaAdN6ANoCEdArg2vOQhfSnV9lChoBkdAkYstNN8E3mgHTegDaAhHQK4VCngpBop1fZQoaAZHQIzPMl/pdKNoB03oA2gIR0CuGC+FlCkXdX2UKGgGR0CHEZf8dgfEaAdN6ANoCEdArhmUDlo11nV9lChoBkdAkApZ0GNaQmgHTegDaAhHQK4aTVCHARF1fZQoaAZHQHnyUyk9ECxoB03hAWgIR0CuHlFQl8gIdX2UKGgGR0CLrc10knkUaAdN6ANoCEdAriNoN7SiNHV9lChoBkdAkHZki6g/T2gHTegDaAhHQK4qOhN/OMV1fZQoaAZHQJH+CFZgXuVoB03oA2gIR0CuKu5vLowFdX2UKGgGR0CMHKFJxvNvaAdN6ANoCEdAri70vAXVLHV9lChoBkdAkN5rsv7FbWgHTegDaAhHQK4ydVOKwZB1fZQoaAZHQJRDM0zj3mFoB03oA2gIR0CuNwJNCZ4OdX2UKGgGR0CO/tar3j+8aAdN6ANoCEdArje9n5BToHV9lChoBkdAb7dsQd0aImgHTegDaAhHQK47rvlU6xR1fZQoaAZHQJIWoRnOB19oB03oA2gIR0CuPxzf779AdX2UKGgGR0CQYXHVf/m1aAdN6ANoCEdArkOqM72crnV9lChoBkdAknW67VawEGgHTegDaAhHQK5EXNHpbEB1fZQoaAZHQJNf+ij+JgtoB03oA2gIR0CuSIa4Ds+ndX2UKGgGR0BoeWykbgjyaAdN+wFoCEdArko6ebutwXV9lChoBkdAkP6kFr2xp2gHTegDaAhHQK5L+IcinpB1fZQoaAZHQHtLQuEmICVoB03oA2gIR0CuUSQUpNKzdX2UKGgGR0CSZlearmyPaAdN6ANoCEdArlUK8Hv+fnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6f5ba189d5eda07fd1426b34cef0357d124c2dd3e03a5bc4bab30baf97ed85
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f731f0352278d46a12d8316dc7b56f642535c95864c220612849e1589d0a5ab
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f46ec82e1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f46ec82e280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f46ec82e310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f46ec82e3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f46ec82e430>", "forward": "<function ActorCriticPolicy.forward at 0x7f46ec82e4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f46ec82e550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f46ec82e5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f46ec82e670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f46ec82e700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f46ec82e790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f46ec82e820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f46ec82b270>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674243273452361231, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIoRoz9+3k2+aiQ4P9EeTb5JfJA+ylEJQP3Wqz963Vi/ycJeP6VUz74FpR6+ljDRusS2sj42L8g+h523v1RXiD5dB7E/w712vzTKzT41y1w/3q8nvyzWAcAgvhg/kfqSvHlfYL8heBI/AQ/CPraxLT/F0k0/wd2wvskEPz+n3+m/5DjhP71Y6j+1Q8A+9dmfPUINDD8F14VAA2WNvm9p4b+ripA/CEZXQPIdD7/0G8C/pOTIvUEGR0AZG0a+SUqgPzLAzT/CRY46mm6ZPxcmUL95X2C/IXgSPwEPwj62sS0/EzcWPoSNCL/QWkI/W25jP3x94z6f2MS61PEUPSkMUL/4LVk/Ew5bvqwopj9sBA09uHPAvzpz/z7JlzE/liA5P9jfpj4/hVs/PO4EP9rNS79iBRs/D4UdQB/rjr/hcqE/5QqSPyO4378BD8I+Rqe8vx7gEj/TlBfA98UewLc6sD8g/gFAilHOPu9qeD9FAwO/JuZHP63aKL4JYiu/PFhAvzFdoT+Uh3y77AfgPSvIfT9xkaI/zIcCv3h0Az+nzzi+/79gPc+Mr7+uhsU+uu0YPnlfYL8heBI/AQ/CPraxLT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADOBTW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh8qBPQAAAAD4lt2/AAAAAIAIar0AAAAAK6b+PwAAAACDGOu9AAAAAKdi2T8AAAAAtWUCvgAAAAC92N6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3k4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNOVgj0AAAAA0BT/vwAAAACag0K8AAAAAJqe6D8AAAAAdcjrPQAAAAAJLvs/AAAAANipCD4AAAAACUnpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwJYzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICzro08AAAAAEpr3b8AAAAA5hpMvQAAAABxGPM/AAAAAJ2dtbwAAAAAfC35PwAAAABFxQa+AAAAAPZs3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZmpWzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAV5OmvQAAAABXWv2/AAAAAIC+wz0AAAAAh+jgPwAAAABHhHu9AAAAAOBB+T8AAAAA4sfxPQAAAABHdd6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQYf1TR6WyMAWyUTegDjAF0lEdArRr9qFh5PnV9lChoBkdAl0bORgZ0jmgHTegDaAhHQK0cZSG8Emp1fZQoaAZHQJcVBGz8gp1oB03oA2gIR0CtHR78ejmCdX2UKGgGR0CRy5nWrfcfaAdN6ANoCEdArSSIymALA3V9lChoBkdAkbcv6sQumWgHTegDaAhHQK0nnz19ORF1fZQoaAZHQJL9O3BpHqhoB03oA2gIR0CtKQgvL5h0dX2UKGgGR0CUHgKfnOjZaAdN6ANoCEdArSnBYaHbh3V9lChoBkdAk36DjaPCEmgHTegDaAhHQK0xKYLsrup1fZQoaAZHQHtZwVwgkkdoB03oA2gIR0CtNC+h4+r3dX2UKGgGR0CSr4QZn+Q2aAdN6ANoCEdArTWbCFbml3V9lChoBkdAh3P3cQAdXGgHTegDaAhHQK02Tslb/wR1fZQoaAZHQIVn81EVnEloB03oA2gIR0CtPcob4rSWdX2UKGgGR0CUSGEqDsdDaAdN6ANoCEdArUDgGhVU/HV9lChoBkdAkdioAbQ1JmgHTegDaAhHQK1CSjHGS6l1fZQoaAZHQJOQdQGfPHFoB03oA2gIR0CtQv8PnSv1dX2UKGgGR0CUWTIUahpQaAdN6ANoCEdArUpQbdadMHV9lChoBkdAk5OcGPgeimgHTegDaAhHQK1NY11GLDR1fZQoaAZHQJHpzb48EFJoB03oA2gIR0CtTr7L+xW1dX2UKGgGR0CWA5XT3IuHaAdN6ANoCEdArU+A7eVLSXV9lChoBkdAkgbMdo3712gHTegDaAhHQK1W6nMMZxd1fZQoaAZHQIyf7m8ujAVoB03oA2gIR0CtWgk3sHB2dX2UKGgGR0CRhSHpr1ujaAdN6ANoCEdArVtnzMA3k3V9lChoBkdAcba3TNMXamgHTegDaAhHQK1cJqWTouB1fZQoaAZHQJBh7Pnjhk1oB03oA2gIR0CtY3vz4DcNdX2UKGgGR0CYQWVR1oxpaAdN6ANoCEdArWafVsk6cXV9lChoBkdAiuuqCHymRGgHTegDaAhHQK1oCdQO4G51fZQoaAZHQJNIEmqo60ZoB03oA2gIR0CtaL6Df3vhdX2UKGgGR0CM9qHQhOgyaAdN6ANoCEdArXAbqGDcunV9lChoBkdAh8PuuJUHZGgHTegDaAhHQK1zNJe3QUp1fZQoaAZHQJLM57CzkZJoB03oA2gIR0CtdJxPoFFEdX2UKGgGR0BypHO7g88taAdN6ANoCEdArXVXUjLSu3V9lChoBkdAd1kQDFId2mgHTegDaAhHQK184zLwF1V1fZQoaAZHQHlL0zGgi/xoB03oA2gIR0Ctf/+nhsIndX2UKGgGR0B6eNMPBi1BaAdN6ANoCEdArYFoKlYU4HV9lChoBkdAdOsIRAbADmgHTegDaAhHQK2CIhUR3/x1fZQoaAZHQHFrT/hl18toB03oA2gIR0CtiYB/7SApdX2UKGgGR0CTiVDjBEa3aAdN6ANoCEdArYyzilzltHV9lChoBkdAkzppbY9PlGgHTegDaAhHQK2OGF3Y+St1fZQoaAZHQJI2cJPZZjhoB03oA2gIR0CtjtQNb1RMdX2UKGgGR0CUZ3rxAjY7aAdN6ANoCEdArZY+GZeAu3V9lChoBkdAkmlPfKp1imgHTegDaAhHQK2ZW4LkS291fZQoaAZHQJK0cFxGUfRoB03oA2gIR0CtmsCWeHzpdX2UKGgGR0CF4Rgl4TsZaAdN6ANoCEdArZuApON5t3V9lChoBkdAlfhCCOFQEmgHTegDaAhHQK2i4kUKzAx1fZQoaAZHQJAFsPVd5Y5oB03oA2gIR0Ctpj/y5I6KdX2UKGgGR0CP9+ouwosqaAdN6ANoCEdAraer26ClJ3V9lChoBkdAk3TT3RG+bmgHTegDaAhHQK2oYUwBYFJ1fZQoaAZHQHP7Sw8nuzBoB03oA2gIR0Ctr85zgdfcdX2UKGgGR0CRWiZof0VaaAdN6ANoCEdArbLzAeq7y3V9lChoBkdAllZ3aJyhjGgHTegDaAhHQK20Zw4sEq51fZQoaAZHQI1Gee8PFvRoB03oA2gIR0CttSHBtUGWdX2UKGgGR0CThyrWiDdyaAdN6ANoCEdArbyqTUy57XV9lChoBkdAkiovY4ACGWgHTegDaAhHQK2/07btZ3d1fZQoaAZHQI/JbKRuCPJoB03oA2gIR0CtwTpTER8MdX2UKGgGR0CSele2NNrTaAdN6ANoCEdArcH5MFlkH3V9lChoBkdAk0SrxZuAJGgHTegDaAhHQK3JZix3V091fZQoaAZHQI6AglF+d9VoB03oA2gIR0CtzIcgIQe4dX2UKGgGR0CRPPhqTKT0aAdN6ANoCEdArc4DFQ2uPnV9lChoBkdAl/KHvhIe5mgHTegDaAhHQK3OuD8Lrop1fZQoaAZHQJSeBiKBNEhoB03oA2gIR0Ct1gSN4qwydX2UKGgGR0CTNKl67dzoaAdN6ANoCEdArdk2l67dznV9lChoBkdAkc39BWxQi2gHTegDaAhHQK3al9x6v7p1fZQoaAZHQJMLLtgKF7FoB03oA2gIR0Ct205n+Q2ddX2UKGgGR0CNq0Nd7fHhaAdN6ANoCEdAreK435vcanV9lChoBkdAhrUj3Ehq02gHTegDaAhHQK3ly0oBq9J1fZQoaAZHQJZ97JiiItVoB03oA2gIR0Ct5ymV7hNudX2UKGgGR0CN4gbDMvAXaAdN6ANoCEdArefkUKzAvnV9lChoBkdAlrn7jo6jnGgHTegDaAhHQK3vQmtQsPJ1fZQoaAZHQJdtiJm/WUdoB03oA2gIR0Ct8mPZIxxldX2UKGgGR0CScEDZUT+OaAdN6ANoCEdArfPOuRs/IXV9lChoBkdAkiszPOY6XGgHTegDaAhHQK30hFId2gZ1fZQoaAZHQJaZ9qdpZfVoB03oA2gIR0Ct+9geaKDTdX2UKGgGR0CUvTYZl4C7aAdN6ANoCEdArf7i7/XGwXV9lChoBkdAlkg3L/0dzWgHTegDaAhHQK4AT5dnkDJ1fZQoaAZHQJDclxo7FKloB03oA2gIR0CuAQuby6MBdX2UKGgGR0CVYvzeGfwraAdN6ANoCEdArghaVpsXSHV9lChoBkdAky3UvboKUmgHTegDaAhHQK4LjrLyMDR1fZQoaAZHQJJ5q8Empl1oB03oA2gIR0CuDO+zdDYzdX2UKGgGR0COtzeUILPVaAdN6ANoCEdArg2vOQhfSnV9lChoBkdAkYstNN8E3mgHTegDaAhHQK4VCngpBop1fZQoaAZHQIzPMl/pdKNoB03oA2gIR0CuGC+FlCkXdX2UKGgGR0CHEZf8dgfEaAdN6ANoCEdArhmUDlo11nV9lChoBkdAkApZ0GNaQmgHTegDaAhHQK4aTVCHARF1fZQoaAZHQHnyUyk9ECxoB03hAWgIR0CuHlFQl8gIdX2UKGgGR0CLrc10knkUaAdN6ANoCEdAriNoN7SiNHV9lChoBkdAkHZki6g/T2gHTegDaAhHQK4qOhN/OMV1fZQoaAZHQJH+CFZgXuVoB03oA2gIR0CuKu5vLowFdX2UKGgGR0CMHKFJxvNvaAdN6ANoCEdAri70vAXVLHV9lChoBkdAkN5rsv7FbWgHTegDaAhHQK4ydVOKwZB1fZQoaAZHQJRDM0zj3mFoB03oA2gIR0CuNwJNCZ4OdX2UKGgGR0CO/tar3j+8aAdN6ANoCEdArje9n5BToHV9lChoBkdAb7dsQd0aImgHTegDaAhHQK47rvlU6xR1fZQoaAZHQJIWoRnOB19oB03oA2gIR0CuPxzf779AdX2UKGgGR0CQYXHVf/m1aAdN6ANoCEdArkOqM72crnV9lChoBkdAknW67VawEGgHTegDaAhHQK5EXNHpbEB1fZQoaAZHQJNf+ij+JgtoB03oA2gIR0CuSIa4Ds+ndX2UKGgGR0BoeWykbgjyaAdN+wFoCEdArko6ebutwXV9lChoBkdAkP6kFr2xp2gHTegDaAhHQK5L+IcinpB1fZQoaAZHQHtLQuEmICVoB03oA2gIR0CuUSQUpNKzdX2UKGgGR0CSZlearmyPaAdN6ANoCEdArlUK8Hv+fnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbcc3b0fab67d44a025e24f695f14b632ed9def9b46eb6667f83624a88264252
3
+ size 1121963
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 794.1754111307688, "std_reward": 281.70093313313254, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T20:32:28.781962"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08a232d53be9d958dd1c764398bfd07be092a057ea8782ffc35b39016bae84ca
3
+ size 2129