experiment and look at finetuning with ms-florence..
Browse files- nodejs/customVision.js +85 -0
nodejs/customVision.js
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import {
|
2 |
+
AutoModelForImageClassification,
|
3 |
+
AutoProcessor,
|
4 |
+
AutoTokenizer,
|
5 |
+
env,
|
6 |
+
RawImage,
|
7 |
+
} from '@huggingface/transformers';
|
8 |
+
|
9 |
+
// Configure environment
|
10 |
+
env.localModelPath = './'; // Path to your ONNX model
|
11 |
+
env.allowRemoteModels = false; // Disable remote models
|
12 |
+
|
13 |
+
async function hasFp16() {
|
14 |
+
try {
|
15 |
+
const adapter = await navigator.gpu.requestAdapter();
|
16 |
+
return adapter.features.has('shader-f16');
|
17 |
+
} catch (e) {
|
18 |
+
return false;
|
19 |
+
}
|
20 |
+
}
|
21 |
+
|
22 |
+
class CustomModelSingleton {
|
23 |
+
static model_id = 'saved-model/'; // Path to your custom ONNX model
|
24 |
+
|
25 |
+
static async getInstance(progress_callback = null) {
|
26 |
+
this.processor ??= await AutoProcessor.from_pretrained(this.model_id);
|
27 |
+
this.tokenizer ??= await AutoTokenizer.from_pretrained(this.model_id);
|
28 |
+
|
29 |
+
this.supports_fp16 ??= await hasFp16();
|
30 |
+
this.model ??= await AutoModelForImageClassification.from_pretrained(this.model_id, {
|
31 |
+
dtype: this.supports_fp16 ? 'fp16' : 'fp32',
|
32 |
+
device: 'webgpu', // Change as per your hardware
|
33 |
+
progress_callback,
|
34 |
+
});
|
35 |
+
|
36 |
+
return Promise.all([this.model, this.tokenizer, this.processor]);
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
async function load() {
|
41 |
+
self.postMessage({
|
42 |
+
status: 'loading',
|
43 |
+
data: 'Loading custom model...',
|
44 |
+
});
|
45 |
+
|
46 |
+
const [model, tokenizer, processor] = await CustomModelSingleton.getInstance((x) => {
|
47 |
+
self.postMessage(x);
|
48 |
+
});
|
49 |
+
|
50 |
+
self.postMessage({
|
51 |
+
status: 'ready',
|
52 |
+
data: 'Model loaded successfully.',
|
53 |
+
});
|
54 |
+
}
|
55 |
+
|
56 |
+
async function run({ imagePath, task }) {
|
57 |
+
const [model, tokenizer, processor] = await CustomModelSingleton.getInstance();
|
58 |
+
|
59 |
+
// Read and preprocess image
|
60 |
+
const image = await RawImage.fromURL(imagePath); // Or use fromBlob if required
|
61 |
+
const vision_inputs = await processor(image);
|
62 |
+
|
63 |
+
// Run inference
|
64 |
+
const results = await model.predict(vision_inputs);
|
65 |
+
|
66 |
+
self.postMessage({ status: 'complete', result: results });
|
67 |
+
}
|
68 |
+
|
69 |
+
self.addEventListener('message', async (e) => {
|
70 |
+
const { type, data } = e.data;
|
71 |
+
|
72 |
+
switch (type) {
|
73 |
+
case 'load':
|
74 |
+
load();
|
75 |
+
break;
|
76 |
+
|
77 |
+
case 'run':
|
78 |
+
run(data);
|
79 |
+
break;
|
80 |
+
|
81 |
+
case 'reset':
|
82 |
+
vision_inputs = null;
|
83 |
+
break;
|
84 |
+
}
|
85 |
+
});
|