File size: 2,479 Bytes
dc0480d
f383cae
 
dc0480d
 
f383cae
dc0480d
 
f383cae
dc0480d
 
 
f383cae
dc0480d
 
 
 
 
f383cae
 
dc0480d
 
 
 
 
 
f383cae
dc0480d
 
 
 
 
f383cae
dc0480d
f383cae
dc0480d
f383cae
 
dc0480d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- da
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Danish (Common Voice Corpus 11.0)
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 da
      type: mozilla-foundation/common_voice_11_0
      config: da
      split: test
      args: da
    metrics:
    - name: Wer
      type: wer
      value: 16.13361388742767
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Danish (Common Voice Corpus 11.0)

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 da dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5081
- Wer: 16.1336

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0229        | 7.01  | 1000  | 0.4464          | 16.5124 |
| 0.0072        | 15.0  | 2000  | 0.5081          | 16.1336 |
| 0.0048        | 22.01 | 3000  | 0.5193          | 16.6597 |
| 0.0034        | 30.0  | 4000  | 0.5715          | 16.8964 |
| 0.0005        | 37.01 | 5000  | 0.5998          | 16.4440 |
| 0.0007        | 45.01 | 6000  | 0.5908          | 16.8017 |
| 0.0001        | 53.0  | 7000  | 0.6093          | 16.2336 |
| 0.0001        | 60.01 | 8000  | 0.6405          | 16.3335 |
| 0.0           | 68.0  | 9000  | 0.6524          | 16.2493 |
| 0.0           | 75.01 | 10000 | 0.6569          | 16.2283 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2