initial push
Browse files
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Card for Model mistral-trimegistus-7b-gguf
|
2 |
+
|
3 |
+
This model repo holds gguf quantized versions of ["teknium/Mistral-Trismegistus-7B"] (https://huggingface.co/teknium/Mistral-Trismegistus-7B).
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
Transcendence is All You Need! Mistral Trismegistus is a model made for people interested in the esoteric, occult, and spiritual.
|
8 |
+
|
9 |
+
### Model Description
|
10 |
+
|
11 |
+
|
12 |
+
- The First Powerful Occult Expert Model: ~10,000 high quality, deep, rich, instructions on the occult, esoteric, and spiritual.
|
13 |
+
|
14 |
+
- Fast: Trained on Mistral, a state of the art 7B parameter model, you can run this model FAST on even a cpu.
|
15 |
+
- Not a positivity-nazi: This model was trained on all forms of esoteric tasks and knowledge, and is not burdened by the flowery nature of many other models, who chose positivity over creativity.
|
16 |
+
|
17 |
+
|
18 |
+
### Model Sources [optional]
|
19 |
+
|
20 |
+
All credits go [here](https://huggingface.co/teknium/Mistral-Trismegistus-7B)
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
USER: <prompt>
|
25 |
+
ASSISTANT:
|
26 |
+
|
27 |
+
OR
|
28 |
+
|
29 |
+
<system message>
|
30 |
+
USER: <prompt>
|
31 |
+
ASSISTANT:
|
32 |
+
|
33 |
+
|
34 |
+
## Training Details
|
35 |
+
|
36 |
+
#### Training Hyperparameters
|
37 |
+
|
38 |
+
"_name_or_path": {
|
39 |
+
"desc": null,
|
40 |
+
"value": "mistralai/Mistral-7B-v0.1"
|
41 |
+
},
|
42 |
+
"architectures": {
|
43 |
+
"desc": null,
|
44 |
+
"value": [
|
45 |
+
"MistralForCausalLM"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
"bad_words_ids": {
|
49 |
+
"desc": null,
|
50 |
+
"value": null
|
51 |
+
},
|
52 |
+
"bench_dataset": {
|
53 |
+
"desc": null,
|
54 |
+
"value": "pharaouk/dharma-1/dharma_1_mini.json"
|
55 |
+
},
|
56 |
+
"learning_rate": {
|
57 |
+
"desc": null,
|
58 |
+
"value": 0.0004
|
59 |
+
},
|
60 |
+
"max_grad_norm": {
|
61 |
+
"desc": null,
|
62 |
+
"value": 1
|
63 |
+
},
|
64 |
+
"fp16_opt_level": {
|
65 |
+
"desc": null,
|
66 |
+
"value": "O1"
|
67 |
+
},
|
68 |
+
"length_penalty": {
|
69 |
+
"desc": null,
|
70 |
+
"value": 1
|
71 |
+
},
|
72 |
+
"max_seq_length": {
|
73 |
+
"desc": null,
|
74 |
+
"value": 4096
|
75 |
+
},
|
76 |
+
"sliding_window": {
|
77 |
+
"desc": null,
|
78 |
+
"value": 4096
|
79 |
+
},
|
80 |
+
"num_beam_groups": {
|
81 |
+
"desc": null,
|
82 |
+
"value": 1
|
83 |
+
},
|
84 |
+
"initializer_range": {
|
85 |
+
"desc": null,
|
86 |
+
"value": 0.02
|
87 |
+
},
|
88 |
+
"intermediate_size": {
|
89 |
+
"desc": null,
|
90 |
+
"value": 14336
|
91 |
+
},
|
92 |
+
"lr_scheduler_type": {
|
93 |
+
"desc": null,
|
94 |
+
"value": "cosine"
|
95 |
+
},
|
96 |
+
"num_hidden_layers": {
|
97 |
+
"desc": null,
|
98 |
+
"value": 32
|
99 |
+
},
|
100 |
+
"repetition_penalty": {
|
101 |
+
"desc": null,
|
102 |
+
"value": 1
|
103 |
+
},
|
104 |
+
"evaluation_strategy": {
|
105 |
+
"desc": null,
|
106 |
+
"value": "steps"
|
107 |
+
},
|
108 |
+
"num_attention_heads": {
|
109 |
+
"desc": null,
|
110 |
+
"value": 32
|
111 |
+
},
|
112 |
+
"num_key_value_heads": {
|
113 |
+
"desc": null,
|
114 |
+
"value": 8
|
115 |
+
},
|
116 |
+
"quantization_config": {
|
117 |
+
"desc": null,
|
118 |
+
"value": {
|
119 |
+
"load_in_4bit": true,
|
120 |
+
"load_in_8bit": false,
|
121 |
+
"quant_method": "QuantizationMethod.BITS_AND_BYTES",
|
122 |
+
"llm_int8_threshold": 6,
|
123 |
+
"bnb_4bit_quant_type": "nf4",
|
124 |
+
"llm_int8_skip_modules": null,
|
125 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
126 |
+
"llm_int8_has_fp16_weight": false,
|
127 |
+
"bnb_4bit_use_double_quant": true,
|
128 |
+
"llm_int8_enable_fp32_cpu_offload": false
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
#### Speeds, Sizes, Times
|
134 |
+
|
135 |
+
{
|
136 |
+
"_step": 9589,
|
137 |
+
"_wandb.runtime": 12960,
|
138 |
+
"_runtime": 12960.192620515823,
|
139 |
+
"eval/loss": 1.4308836460113523,
|
140 |
+
"train/train_steps_per_second": 0.739,
|
141 |
+
"train/train_samples_per_second": 2.956,
|
142 |
+
"train/loss": 0.3396,
|
143 |
+
"train/epoch": 4,
|
144 |
+
"train/total_flos": 1757020072120942600,
|
145 |
+
"train/train_loss": 0.8929485179171377,
|
146 |
+
"train/learning_rate": 0,
|
147 |
+
"eval/steps_per_second": 2.196,
|
148 |
+
"_timestamp": 1696542775.2713604,
|
149 |
+
"eval/runtime": 11.3829,
|
150 |
+
"train/global_step": 9584,
|
151 |
+
"train/train_runtime": 12962.7813,
|
152 |
+
"eval/samples_per_second": 8.522
|
153 |
+
}
|