--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-bpmn results: [] --- # bert-finetuned-bpmn This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2656 - Precision: 0.7314 - Recall: 0.8366 - F1: 0.7805 - Accuracy: 0.8939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.8437 | 0.1899 | 0.3203 | 0.2384 | 0.7005 | | No log | 2.0 | 20 | 0.4967 | 0.5421 | 0.7582 | 0.6322 | 0.8417 | | No log | 3.0 | 30 | 0.3403 | 0.6719 | 0.8431 | 0.7478 | 0.8867 | | No log | 4.0 | 40 | 0.2821 | 0.6923 | 0.8235 | 0.7522 | 0.8903 | | No log | 5.0 | 50 | 0.2656 | 0.7314 | 0.8366 | 0.7805 | 0.8939 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2