jtlicardo commited on
Commit
4b9c573
1 Parent(s): 8ddc74c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bpmn-information-extraction-v2
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bpmn-information-extraction-v2
19
+
20
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2179
23
+ - Precision: 0.8826
24
+ - Recall: 0.9246
25
+ - F1: 0.9031
26
+ - Accuracy: 0.9516
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.9945 | 1.0 | 12 | 1.5128 | 0.2534 | 0.3730 | 0.3018 | 0.5147 |
58
+ | 1.2161 | 2.0 | 24 | 0.8859 | 0.2977 | 0.4524 | 0.3591 | 0.7256 |
59
+ | 0.6755 | 3.0 | 36 | 0.4876 | 0.5562 | 0.7262 | 0.6299 | 0.8604 |
60
+ | 0.372 | 4.0 | 48 | 0.3091 | 0.7260 | 0.8413 | 0.7794 | 0.9128 |
61
+ | 0.2412 | 5.0 | 60 | 0.2247 | 0.7526 | 0.8571 | 0.8015 | 0.9342 |
62
+ | 0.1636 | 6.0 | 72 | 0.2102 | 0.8043 | 0.8968 | 0.8480 | 0.9413 |
63
+ | 0.1325 | 7.0 | 84 | 0.1910 | 0.8667 | 0.9286 | 0.8966 | 0.9500 |
64
+ | 0.11 | 8.0 | 96 | 0.2352 | 0.8456 | 0.9127 | 0.8779 | 0.9389 |
65
+ | 0.0945 | 9.0 | 108 | 0.2179 | 0.8550 | 0.9127 | 0.8829 | 0.9429 |
66
+ | 0.0788 | 10.0 | 120 | 0.2203 | 0.8830 | 0.9286 | 0.9052 | 0.9445 |
67
+ | 0.0721 | 11.0 | 132 | 0.2079 | 0.8902 | 0.9325 | 0.9109 | 0.9516 |
68
+ | 0.0617 | 12.0 | 144 | 0.2367 | 0.8797 | 0.9286 | 0.9035 | 0.9445 |
69
+ | 0.0615 | 13.0 | 156 | 0.2183 | 0.8859 | 0.9246 | 0.9049 | 0.9492 |
70
+ | 0.0526 | 14.0 | 168 | 0.2179 | 0.8826 | 0.9246 | 0.9031 | 0.9516 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.26.1
76
+ - Pytorch 1.13.1+cu116
77
+ - Datasets 2.10.0
78
+ - Tokenizers 0.13.2