juampahc commited on
Commit
a01d18b
1 Parent(s): a4afca1

Add new SentenceTransformer model with an onnx backend

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 0_StaticEmbedding/tokenizer.json filter=lfs diff=lfs merge=lfs -text
0_StaticEmbedding/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1447cd865f8f0b2dedc60d640c6279217cf5eeeed4a582365ebe8fe50df35d84
3
+ size 1024008288
0_StaticEmbedding/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:249df0778f236f6ece390de0de746838ef25b9d6954b68c2ee71249e0a9d8fd4
3
+ size 17082799
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ ---
9
+
10
+ # SentenceTransformer
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+ - **Model Type:** Sentence Transformer
18
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
19
+ - **Maximum Sequence Length:** inf tokens
20
+ - **Output Dimensionality:** 1024 tokens
21
+ - **Similarity Function:** Cosine Similarity
22
+ <!-- - **Training Dataset:** Unknown -->
23
+ <!-- - **Language:** Unknown -->
24
+ <!-- - **License:** Unknown -->
25
+
26
+ ### Model Sources
27
+
28
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
29
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
30
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
31
+
32
+ ### Full Model Architecture
33
+
34
+ ```
35
+ SentenceTransformer(
36
+ (0): StaticEmbedding(
37
+ (embedding): EmbeddingBag(250002, 1024, mode='mean')
38
+ )
39
+ )
40
+ ```
41
+
42
+ ## Usage
43
+
44
+ ### Direct Usage (Sentence Transformers)
45
+
46
+ First install the Sentence Transformers library:
47
+
48
+ ```bash
49
+ pip install -U sentence-transformers
50
+ ```
51
+
52
+ Then you can load this model and run inference.
53
+ ```python
54
+ from sentence_transformers import SentenceTransformer
55
+
56
+ # Download from the 🤗 Hub
57
+ model = SentenceTransformer("juampahc/bge-m3-m2v-1024")
58
+ # Run inference
59
+ sentences = [
60
+ 'The weather is lovely today.',
61
+ "It's so sunny outside!",
62
+ 'He drove to the stadium.',
63
+ ]
64
+ embeddings = model.encode(sentences)
65
+ print(embeddings.shape)
66
+ # [3, 1024]
67
+
68
+ # Get the similarity scores for the embeddings
69
+ similarities = model.similarity(embeddings, embeddings)
70
+ print(similarities.shape)
71
+ # [3, 3]
72
+ ```
73
+
74
+ <!--
75
+ ### Direct Usage (Transformers)
76
+
77
+ <details><summary>Click to see the direct usage in Transformers</summary>
78
+
79
+ </details>
80
+ -->
81
+
82
+ <!--
83
+ ### Downstream Usage (Sentence Transformers)
84
+
85
+ You can finetune this model on your own dataset.
86
+
87
+ <details><summary>Click to expand</summary>
88
+
89
+ </details>
90
+ -->
91
+
92
+ <!--
93
+ ### Out-of-Scope Use
94
+
95
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
96
+ -->
97
+
98
+ <!--
99
+ ## Bias, Risks and Limitations
100
+
101
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
102
+ -->
103
+
104
+ <!--
105
+ ### Recommendations
106
+
107
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
108
+ -->
109
+
110
+ ## Training Details
111
+
112
+ ### Framework Versions
113
+ - Python: 3.10.12
114
+ - Sentence Transformers: 3.2.1
115
+ - Transformers: 4.45.2
116
+ - PyTorch: 2.5.0+cu121
117
+ - Accelerate: 0.34.2
118
+ - Datasets: 3.0.2
119
+ - Tokenizers: 0.20.1
120
+
121
+ ## Citation
122
+
123
+ ### BibTeX
124
+
125
+ <!--
126
+ ## Glossary
127
+
128
+ *Clearly define terms in order to be accessible across audiences.*
129
+ -->
130
+
131
+ <!--
132
+ ## Model Card Authors
133
+
134
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
135
+ -->
136
+
137
+ <!--
138
+ ## Model Card Contact
139
+
140
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
141
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "0_StaticEmbedding",
6
+ "type": "sentence_transformers.models.StaticEmbedding"
7
+ }
8
+ ]