juanluisdb commited on
Commit
dfd64c8
1 Parent(s): 6ea9a53

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -2,16 +2,48 @@
2
  library_name: transformers
3
  tags:
4
  - cross-encoder
 
 
 
 
 
 
5
  ---
6
 
7
  # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # Evaluation
12
 
13
  ### BEIR (NDCG@10)
14
- Cross Encoders rerank top100 BM25 results
15
 
16
  | | nq* | fever* | fiqa | trec-covid | scidocs | scifact | nfcorpus | hotpotqa | dbpedia-entity | quora | climate-fever |
17
  |:--------------------------|:----------|:----------|:----------|:-------------|:----------|:----------|:-----------|:-----------|:-----------------|:----------|:----------------|
@@ -22,4 +54,21 @@ Cross Encoders rerank top100 BM25 results
22
  | ms-marco-MiniLM-L-6-v2 | 0.523 | 0.801 | 0.349 | 0.741 | 0.164 | 0.688 | 0.349 | 0.724 | 0.445 | 0.825 | 0.244 |
23
  | MiniLM-L-6-rerank-reborn | 0.580 | **0.867** | 0.364 | 0.738 | 0.165 | **0.750** | 0.350 | 0.775 | 0.444 | **0.871** | 0.309 |
24
 
25
- * Training splits of NQ and Fever were used as part of the training data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
  tags:
4
  - cross-encoder
5
+ datasets:
6
+ - lightonai/ms-marco-en-bge
7
+ language:
8
+ - en
9
+ base_model:
10
+ - cross-encoder/ms-marco-MiniLM-L-6-v2
11
  ---
12
 
13
  # Model Card for Model ID
14
 
15
+ This model is finetuned starting from the well-known [ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) using KL distillation techniques as described [here](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html),
16
+ using [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) as teacher
17
+
18
+ # Usage
19
+
20
+ ## Usage with Transformers
21
+
22
+ ```python
23
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
24
+ import torch
25
+ model = AutoModelForSequenceClassification.from_pretrained("juanluisdb/MiniLM-L-6-rerank-reborn")
26
+ tokenizer = AutoTokenizer.from_pretrained("juanluisdb/MiniLM-L-6-rerank-reborn")
27
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt")
28
+ model.eval()
29
+ with torch.no_grad():
30
+ scores = model(**features).logits
31
+ print(scores)
32
+ ```
33
+
34
+
35
+ ## Usage with SentenceTransformers
36
+
37
+ ```python
38
+ from sentence_transformers import CrossEncoder
39
+ model = CrossEncoder("juanluisdb/MiniLM-L-6-rerank-reborn", max_length=512)
40
+ scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
41
+ ```
42
 
43
  # Evaluation
44
 
45
  ### BEIR (NDCG@10)
46
+ I've run tests on different BEIR datasets. Cross Encoders rerank top100 BM25 results.
47
 
48
  | | nq* | fever* | fiqa | trec-covid | scidocs | scifact | nfcorpus | hotpotqa | dbpedia-entity | quora | climate-fever |
49
  |:--------------------------|:----------|:----------|:----------|:-------------|:----------|:----------|:-----------|:-----------|:-----------------|:----------|:----------------|
 
54
  | ms-marco-MiniLM-L-6-v2 | 0.523 | 0.801 | 0.349 | 0.741 | 0.164 | 0.688 | 0.349 | 0.724 | 0.445 | 0.825 | 0.244 |
55
  | MiniLM-L-6-rerank-reborn | 0.580 | **0.867** | 0.364 | 0.738 | 0.165 | **0.750** | 0.350 | 0.775 | 0.444 | **0.871** | 0.309 |
56
 
57
+ \* Training splits of NQ and Fever were used as part of the training data.
58
+
59
+ Comparison with [ablated model](https://huggingface.co/juanluisdb/MiniLM-L-6-rerank-reborn-ablated/settings) trained only on MSMarco:
60
+ | | nq | fever | fiqa | trec-covid | scidocs | scifact | nfcorpus | hotpotqa | dbpedia-entity | quora | climate-fever |
61
+ |:------------------------------------|-------:|--------:|-------:|-------------:|----------:|----------:|-----------:|-----------:|-----------------:|--------:|----------------:|
62
+ | ms-marco-MiniLM-L-6-v2 | 0.5234 | 0.8007 | 0.349 | 0.741 | 0.1638 | 0.688 | 0.3493 | 0.7235 | 0.4445 | 0.8251 | 0.2438 |
63
+ | MiniLM-L-6-rerank-refreshed-ablated | 0.5412 | 0.8221 | 0.3598 | 0.7331 | 0.163 | 0.7376 | 0.3495 | 0.7583 | 0.4382 | 0.8619 | 0.2449 |
64
+ | improvement (%) | **3.40** | **2.67** | **3.08** | -1.07 | -0.47 | **7.22** | 0.08 | **4.80** | -1.41 | **4.45** | **0.47** |
65
+
66
+
67
+ # Datasets Used
68
+
69
+ ~900k queries with 32-way triplets were used from these datasets:
70
+
71
+ * MSMarco
72
+ * TriviaQA
73
+ * Natural Questions
74
+ * FEVER