File size: 29,891 Bytes
183f975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4012
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Extensive messenger RNA editing generates transcript and protein
    diversity in genes involved in neural excitability, as previously described, as
    well as in genes participating in a broad range of other cellular functions. '
  sentences:
  - Do cephalopods use RNA editing less frequently than other species?
  - GV1001 vaccine targets which enzyme?
  - Which event results in the acetylation of S6K1?
- source_sentence: Yes, exposure to household furry pets influences the gut microbiota
    of infants.
  sentences:
  - Can pets affect infant microbiomed?
  - What is the mode of action of Thiazovivin?
  - What are the effects of CAMK4 inhibition?
- source_sentence: "In children with heart failure evidence of the effect of enalapril\
    \ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
    \ children with cardiac failure secondary to congenital heart malformations before\
    \ and after cardiac surgery,  impaired ventricular function , valvar regurgitation,\
    \  congestive cardiomyopathy,  , arterial hypertension, life-threatening arrhythmias\
    \ coexisting with circulatory insufficiency.   \nACE inhibitors have shown a transient\
    \ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
    \ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
    \ studies."
  sentences:
  - Which receptors can be evaluated with the [18F]altanserin?
  - In what proportion of children with heart failure has Enalapril been shown to
    be safe and effective?
  - Which major signaling pathways are regulated by RIP1?
- source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
    a novel type of chromatin condensation involving alterations of linker histone
    H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
    but their mechanism of action remains unclear.
  sentences:
  - What is the relationship between the X chromosome and a  neutrophil drumstick?
  - Which microRNAs are involved in exercise adaptation?
  - How are SAHFS created?
- source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
    circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
    are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
    deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
    of all three clusters (tricluster deletion) led to a severe axonal arborization
    defect and loss of self-avoidance.
  sentences:
  - What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
    in mice?
  - what is the role of MEF-2 in cardiomyocyte differentiation?
  - How many periods of regulatory innovation led to the evolution of vertebrates?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8528995756718529
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9264497878359265
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9462517680339463
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.958981612446959
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8528995756718529
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3088165959453088
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18925035360678924
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09589816124469587
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8528995756718529
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9264497878359265
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9462517680339463
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.958981612446959
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9106149406529569
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8946105835073304
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8959864574088351
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8472418670438473
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9321074964639321
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9476661951909476
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9603960396039604
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8472418670438473
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3107024988213107
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1895332390381895
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09603960396039603
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8472418670438473
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9321074964639321
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9476661951909476
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9603960396039604
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9095270940461391
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8926230888394963
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8939142126576148
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8359264497878359
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.925035360678925
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9405940594059405
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9533239038189534
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8359264497878359
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30834512022630833
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1881188118811881
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09533239038189532
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8359264497878359
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.925035360678925
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9405940594059405
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9533239038189534
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9003866854175698
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8828006780269864
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8839707936250328
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8175388967468176
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9108910891089109
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9264497878359265
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9434229137199435
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8175388967468176
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30363036303630364
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18528995756718525
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09434229137199433
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8175388967468176
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9108910891089109
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9264497878359265
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9434229137199435
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8862907631297875
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8674047506791496
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8686719824449951
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.7779349363507779
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8868458274398868
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9066478076379066
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9207920792079208
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7779349363507779
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2956152758132956
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1813295615275813
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09207920792079208
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7779349363507779
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8868458274398868
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9066478076379066
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9207920792079208
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8570476590886804
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.835792303720168
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8374166888522218
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-base-bioasq-matryoshka")
# Run inference
sentences = [
    'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
    'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
    'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.8529    |
| cosine_accuracy@3   | 0.9264    |
| cosine_accuracy@5   | 0.9463    |
| cosine_accuracy@10  | 0.959     |
| cosine_precision@1  | 0.8529    |
| cosine_precision@3  | 0.3088    |
| cosine_precision@5  | 0.1893    |
| cosine_precision@10 | 0.0959    |
| cosine_recall@1     | 0.8529    |
| cosine_recall@3     | 0.9264    |
| cosine_recall@5     | 0.9463    |
| cosine_recall@10    | 0.959     |
| cosine_ndcg@10      | 0.9106    |
| cosine_mrr@10       | 0.8946    |
| **cosine_map@100**  | **0.896** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8472     |
| cosine_accuracy@3   | 0.9321     |
| cosine_accuracy@5   | 0.9477     |
| cosine_accuracy@10  | 0.9604     |
| cosine_precision@1  | 0.8472     |
| cosine_precision@3  | 0.3107     |
| cosine_precision@5  | 0.1895     |
| cosine_precision@10 | 0.096      |
| cosine_recall@1     | 0.8472     |
| cosine_recall@3     | 0.9321     |
| cosine_recall@5     | 0.9477     |
| cosine_recall@10    | 0.9604     |
| cosine_ndcg@10      | 0.9095     |
| cosine_mrr@10       | 0.8926     |
| **cosine_map@100**  | **0.8939** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.8359    |
| cosine_accuracy@3   | 0.925     |
| cosine_accuracy@5   | 0.9406    |
| cosine_accuracy@10  | 0.9533    |
| cosine_precision@1  | 0.8359    |
| cosine_precision@3  | 0.3083    |
| cosine_precision@5  | 0.1881    |
| cosine_precision@10 | 0.0953    |
| cosine_recall@1     | 0.8359    |
| cosine_recall@3     | 0.925     |
| cosine_recall@5     | 0.9406    |
| cosine_recall@10    | 0.9533    |
| cosine_ndcg@10      | 0.9004    |
| cosine_mrr@10       | 0.8828    |
| **cosine_map@100**  | **0.884** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8175     |
| cosine_accuracy@3   | 0.9109     |
| cosine_accuracy@5   | 0.9264     |
| cosine_accuracy@10  | 0.9434     |
| cosine_precision@1  | 0.8175     |
| cosine_precision@3  | 0.3036     |
| cosine_precision@5  | 0.1853     |
| cosine_precision@10 | 0.0943     |
| cosine_recall@1     | 0.8175     |
| cosine_recall@3     | 0.9109     |
| cosine_recall@5     | 0.9264     |
| cosine_recall@10    | 0.9434     |
| cosine_ndcg@10      | 0.8863     |
| cosine_mrr@10       | 0.8674     |
| **cosine_map@100**  | **0.8687** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7779     |
| cosine_accuracy@3   | 0.8868     |
| cosine_accuracy@5   | 0.9066     |
| cosine_accuracy@10  | 0.9208     |
| cosine_precision@1  | 0.7779     |
| cosine_precision@3  | 0.2956     |
| cosine_precision@5  | 0.1813     |
| cosine_precision@10 | 0.0921     |
| cosine_recall@1     | 0.7779     |
| cosine_recall@3     | 0.8868     |
| cosine_recall@5     | 0.9066     |
| cosine_recall@10    | 0.9208     |
| cosine_ndcg@10      | 0.857      |
| cosine_mrr@10       | 0.8358     |
| **cosine_map@100**  | **0.8374** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,012 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                      | anchor                                                                                 |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code>                                                                                                                                  | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
  | <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code>                                                                                                                                                                                                                                      | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code>              |
  | <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code>          |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8889     | 7      | -             | 0.8674                 | 0.8951                 | 0.8991                 | 0.8236                | 0.8996                 |
| 1.2698     | 10     | 1.6285        | -                      | -                      | -                      | -                     | -                      |
| 1.9048     | 15     | -             | 0.8662                 | 0.8849                 | 0.8951                 | 0.8334                | 0.8945                 |
| 2.5397     | 20     | 0.7273        | -                      | -                      | -                      | -                     | -                      |
| 2.9206     | 23     | -             | 0.8681                 | 0.8849                 | 0.8946                 | 0.8362                | 0.8967                 |
| **3.5556** | **28** | **-**         | **0.8687**             | **0.884**              | **0.8939**             | **0.8374**            | **0.896**              |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->