File size: 24,268 Bytes
5450101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
---
base_model: BAAI/bge-small-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4012
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Extensive messenger RNA editing generates transcript and protein
diversity in genes involved in neural excitability, as previously described, as
well as in genes participating in a broad range of other cellular functions. '
sentences:
- Do cephalopods use RNA editing less frequently than other species?
- GV1001 vaccine targets which enzyme?
- Which event results in the acetylation of S6K1?
- source_sentence: Yes, exposure to household furry pets influences the gut microbiota
of infants.
sentences:
- Can pets affect infant microbiomed?
- What is the mode of action of Thiazovivin?
- What are the effects of CAMK4 inhibition?
- source_sentence: "In children with heart failure evidence of the effect of enalapril\
\ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
\ children with cardiac failure secondary to congenital heart malformations before\
\ and after cardiac surgery, impaired ventricular function , valvar regurgitation,\
\ congestive cardiomyopathy, , arterial hypertension, life-threatening arrhythmias\
\ coexisting with circulatory insufficiency. \nACE inhibitors have shown a transient\
\ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
\ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
\ studies."
sentences:
- Which receptors can be evaluated with the [18F]altanserin?
- In what proportion of children with heart failure has Enalapril been shown to
be safe and effective?
- Which major signaling pathways are regulated by RIP1?
- source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
a novel type of chromatin condensation involving alterations of linker histone
H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
but their mechanism of action remains unclear.
sentences:
- What is the relationship between the X chromosome and a neutrophil drumstick?
- Which microRNAs are involved in exercise adaptation?
- How are SAHFS created?
- source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
of all three clusters (tricluster deletion) led to a severe axonal arborization
defect and loss of self-avoidance.
sentences:
- What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
in mice?
- what is the role of MEF-2 in cardiomyocyte differentiation?
- How many periods of regulatory innovation led to the evolution of vertebrates?
model-index:
- name: BGE small finetuned BIOASQ
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: BAAI/bge small en v1.5
type: BAAI/bge-small-en-v1.5
metrics:
- type: cosine_accuracy@1
value: 0.8345120226308345
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9222065063649222
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.942008486562942
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9575671852899575
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8345120226308345
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3074021687883074
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18840169731258838
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09575671852899574
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8345120226308345
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9222065063649222
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.942008486562942
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9575671852899575
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9010271342291756
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8824010462270717
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8834285782752825
name: Cosine Map@100
---
# BGE small finetuned BIOASQ
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-small-bioasq-1epoch-batch32")
# Run inference
sentences = [
'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `BAAI/bge-small-en-v1.5`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8345 |
| cosine_accuracy@3 | 0.9222 |
| cosine_accuracy@5 | 0.942 |
| cosine_accuracy@10 | 0.9576 |
| cosine_precision@1 | 0.8345 |
| cosine_precision@3 | 0.3074 |
| cosine_precision@5 | 0.1884 |
| cosine_precision@10 | 0.0958 |
| cosine_recall@1 | 0.8345 |
| cosine_recall@3 | 0.9222 |
| cosine_recall@5 | 0.942 |
| cosine_recall@10 | 0.9576 |
| cosine_ndcg@10 | 0.901 |
| cosine_mrr@10 | 0.8824 |
| **cosine_map@100** | **0.8834** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,012 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
| <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code> | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
| <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code> | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code> |
| <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | BAAI/bge-small-en-v1.5_cosine_map@100 |
|:------:|:----:|:-------------:|:-------------------------------------:|
| 0.0794 | 10 | 0.5344 | - |
| 0.1587 | 20 | 0.4615 | - |
| 0.2381 | 30 | 0.301 | - |
| 0.3175 | 40 | 0.2169 | - |
| 0.3968 | 50 | 0.1053 | - |
| 0.4762 | 60 | 0.1432 | - |
| 0.5556 | 70 | 0.1589 | - |
| 0.6349 | 80 | 0.1458 | - |
| 0.7143 | 90 | 0.1692 | - |
| 0.7937 | 100 | 0.1664 | - |
| 0.8730 | 110 | 0.1252 | - |
| 0.9524 | 120 | 0.1243 | - |
| 1.0 | 126 | - | 0.8858 |
| 0.0794 | 10 | 0.1393 | - |
| 0.1587 | 20 | 0.1504 | - |
| 0.2381 | 30 | 0.1009 | - |
| 0.3175 | 40 | 0.0689 | - |
| 0.3968 | 50 | 0.0301 | - |
| 0.4762 | 60 | 0.0647 | - |
| 0.5556 | 70 | 0.0748 | - |
| 0.6349 | 80 | 0.0679 | - |
| 0.7143 | 90 | 0.1091 | - |
| 0.7937 | 100 | 0.0953 | - |
| 0.8730 | 110 | 0.089 | - |
| 0.9524 | 120 | 0.0758 | - |
| 1.0 | 126 | - | 0.8878 |
| 0.0794 | 10 | 0.092 | - |
| 0.1587 | 20 | 0.0748 | - |
| 0.2381 | 30 | 0.0392 | - |
| 0.3175 | 40 | 0.014 | - |
| 0.3968 | 50 | 0.0057 | - |
| 0.4762 | 60 | 0.0208 | - |
| 0.5556 | 70 | 0.0173 | - |
| 0.6349 | 80 | 0.0195 | - |
| 0.7143 | 90 | 0.0349 | - |
| 0.7937 | 100 | 0.0483 | - |
| 0.8730 | 110 | 0.0254 | - |
| 0.9524 | 120 | 0.0325 | - |
| 1.0 | 126 | - | 0.8883 |
| 1.0317 | 130 | 0.0582 | - |
| 1.1111 | 140 | 0.0475 | - |
| 1.1905 | 150 | 0.0325 | - |
| 1.2698 | 160 | 0.0058 | - |
| 1.3492 | 170 | 0.0054 | - |
| 1.4286 | 180 | 0.0047 | - |
| 1.5079 | 190 | 0.0076 | - |
| 1.5873 | 200 | 0.0091 | - |
| 1.6667 | 210 | 0.0232 | - |
| 1.7460 | 220 | 0.0147 | - |
| 1.8254 | 230 | 0.0194 | - |
| 1.9048 | 240 | 0.0186 | - |
| 1.9841 | 250 | 0.0141 | - |
| 2.0 | 252 | - | 0.8857 |
| 2.0635 | 260 | 0.037 | - |
| 2.1429 | 270 | 0.0401 | - |
| 2.2222 | 280 | 0.0222 | - |
| 2.3016 | 290 | 0.0134 | - |
| 2.3810 | 300 | 0.008 | - |
| 2.4603 | 310 | 0.0199 | - |
| 2.5397 | 320 | 0.017 | - |
| 2.6190 | 330 | 0.0164 | - |
| 2.6984 | 340 | 0.0344 | - |
| 2.7778 | 350 | 0.0352 | - |
| 2.8571 | 360 | 0.0346 | - |
| 2.9365 | 370 | 0.0256 | - |
| 3.0 | 378 | - | 0.8868 |
| 0.7937 | 100 | 0.0064 | 0.8878 |
| 0.0794 | 10 | 0.003 | 0.8858 |
| 0.1587 | 20 | 0.0026 | 0.8811 |
| 0.2381 | 30 | 0.0021 | 0.8817 |
| 0.3175 | 40 | 0.0017 | 0.8818 |
| 0.3968 | 50 | 0.0015 | 0.8818 |
| 0.4762 | 60 | 0.0019 | 0.8814 |
| 0.5556 | 70 | 0.0019 | 0.8798 |
| 0.6349 | 80 | 0.0024 | 0.8811 |
| 0.7143 | 90 | 0.0029 | 0.8834 |
| 0.7937 | 100 | 0.006 | 0.8827 |
| 0.8730 | 110 | 0.0028 | 0.8827 |
| 0.9524 | 120 | 0.005 | 0.8834 |
### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |