File size: 23,283 Bytes
9f75463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
---
base_model: BAAI/bge-small-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4012
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'Extensive messenger RNA editing generates transcript and protein
    diversity in genes involved in neural excitability, as previously described, as
    well as in genes participating in a broad range of other cellular functions. '
  sentences:
  - Do cephalopods use RNA editing less frequently than other species?
  - GV1001 vaccine targets which enzyme?
  - Which event results in the acetylation of S6K1?
- source_sentence: Yes, exposure to household furry pets influences the gut microbiota
    of infants.
  sentences:
  - Can pets affect infant microbiomed?
  - What is the mode of action of Thiazovivin?
  - What are the effects of CAMK4 inhibition?
- source_sentence: "In children with heart failure evidence of the effect of enalapril\
    \ is empirical. Enalapril was clinically safe and effective in 50% to 80% of for\
    \ children with cardiac failure secondary to congenital heart malformations before\
    \ and after cardiac surgery,  impaired ventricular function , valvar regurgitation,\
    \  congestive cardiomyopathy,  , arterial hypertension, life-threatening arrhythmias\
    \ coexisting with circulatory insufficiency.   \nACE inhibitors have shown a transient\
    \ beneficial effect on heart failure due to anticancer drugs and possibly a beneficial\
    \ effect in muscular dystrophy-associated cardiomyopathy, which deserves further\
    \ studies."
  sentences:
  - Which receptors can be evaluated with the [18F]altanserin?
  - In what proportion of children with heart failure has Enalapril been shown to
    be safe and effective?
  - Which major signaling pathways are regulated by RIP1?
- source_sentence: Cellular senescence-associated heterochromatic foci (SAHFS) are
    a novel type of chromatin condensation involving alterations of linker histone
    H1 and linker DNA-binding proteins. SAHFS can be formed by a variety of cell types,
    but their mechanism of action remains unclear.
  sentences:
  - What is the relationship between the X chromosome and a  neutrophil drumstick?
  - Which microRNAs are involved in exercise adaptation?
  - How are SAHFS created?
- source_sentence: Multicluster Pcdh diversity is required for mouse olfactory neural
    circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins
    are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although
    deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss
    of all three clusters (tricluster deletion) led to a severe axonal arborization
    defect and loss of self-avoidance.
  sentences:
  - What are the effects of the deletion of all three Pcdh clusters (tricluster deletion)
    in mice?
  - what is the role of MEF-2 in cardiomyocyte differentiation?
  - How many periods of regulatory innovation led to the evolution of vertebrates?
model-index:
- name: BGE small finetuned BIOASQ
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: BAAI/bge small en v1.5
      type: BAAI/bge-small-en-v1.5
    metrics:
    - type: cosine_accuracy@1
      value: 0.8373408769448374
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.925035360678925
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9476661951909476
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9618104667609618
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8373408769448374
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30834512022630833
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18953323903818953
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09618104667609619
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8373408769448374
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.925035360678925
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9476661951909476
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9618104667609618
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9048218842329923
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8860235513347253
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.886766844616012
      name: Cosine Map@100
---

# BGE small finetuned BIOASQ

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-small-bioasq-3epochs-batch32")
# Run inference
sentences = [
    'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
    'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
    'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `BAAI/bge-small-en-v1.5`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8373     |
| cosine_accuracy@3   | 0.925      |
| cosine_accuracy@5   | 0.9477     |
| cosine_accuracy@10  | 0.9618     |
| cosine_precision@1  | 0.8373     |
| cosine_precision@3  | 0.3083     |
| cosine_precision@5  | 0.1895     |
| cosine_precision@10 | 0.0962     |
| cosine_recall@1     | 0.8373     |
| cosine_recall@3     | 0.925      |
| cosine_recall@5     | 0.9477     |
| cosine_recall@10    | 0.9618     |
| cosine_ndcg@10      | 0.9048     |
| cosine_mrr@10       | 0.886      |
| **cosine_map@100**  | **0.8868** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,012 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 63.38 tokens</li><li>max: 485 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.13 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                      | anchor                                                                                 |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma.</code>                                                                                                                                  | <code>What is the implication of histone lysine methylation in medulloblastoma?</code> |
  | <code>STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation.</code>                                                                                                                                                                                                                                      | <code>What is the role of STAG1/STAG2 proteins in differentiation?</code>              |
  | <code>The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma.</code> | <code>What is the association between cell phone use and glioblastoma?</code>          |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | BAAI/bge-small-en-v1.5_cosine_map@100 |
|:------:|:----:|:-------------:|:-------------------------------------:|
| 0.0794 | 10   | 0.5344        | -                                     |
| 0.1587 | 20   | 0.4615        | -                                     |
| 0.2381 | 30   | 0.301         | -                                     |
| 0.3175 | 40   | 0.2169        | -                                     |
| 0.3968 | 50   | 0.1053        | -                                     |
| 0.4762 | 60   | 0.1432        | -                                     |
| 0.5556 | 70   | 0.1589        | -                                     |
| 0.6349 | 80   | 0.1458        | -                                     |
| 0.7143 | 90   | 0.1692        | -                                     |
| 0.7937 | 100  | 0.1664        | -                                     |
| 0.8730 | 110  | 0.1252        | -                                     |
| 0.9524 | 120  | 0.1243        | -                                     |
| 1.0    | 126  | -             | 0.8858                                |
| 0.0794 | 10   | 0.1393        | -                                     |
| 0.1587 | 20   | 0.1504        | -                                     |
| 0.2381 | 30   | 0.1009        | -                                     |
| 0.3175 | 40   | 0.0689        | -                                     |
| 0.3968 | 50   | 0.0301        | -                                     |
| 0.4762 | 60   | 0.0647        | -                                     |
| 0.5556 | 70   | 0.0748        | -                                     |
| 0.6349 | 80   | 0.0679        | -                                     |
| 0.7143 | 90   | 0.1091        | -                                     |
| 0.7937 | 100  | 0.0953        | -                                     |
| 0.8730 | 110  | 0.089         | -                                     |
| 0.9524 | 120  | 0.0758        | -                                     |
| 1.0    | 126  | -             | 0.8878                                |
| 0.0794 | 10   | 0.092         | -                                     |
| 0.1587 | 20   | 0.0748        | -                                     |
| 0.2381 | 30   | 0.0392        | -                                     |
| 0.3175 | 40   | 0.014         | -                                     |
| 0.3968 | 50   | 0.0057        | -                                     |
| 0.4762 | 60   | 0.0208        | -                                     |
| 0.5556 | 70   | 0.0173        | -                                     |
| 0.6349 | 80   | 0.0195        | -                                     |
| 0.7143 | 90   | 0.0349        | -                                     |
| 0.7937 | 100  | 0.0483        | -                                     |
| 0.8730 | 110  | 0.0254        | -                                     |
| 0.9524 | 120  | 0.0325        | -                                     |
| 1.0    | 126  | -             | 0.8883                                |
| 1.0317 | 130  | 0.0582        | -                                     |
| 1.1111 | 140  | 0.0475        | -                                     |
| 1.1905 | 150  | 0.0325        | -                                     |
| 1.2698 | 160  | 0.0058        | -                                     |
| 1.3492 | 170  | 0.0054        | -                                     |
| 1.4286 | 180  | 0.0047        | -                                     |
| 1.5079 | 190  | 0.0076        | -                                     |
| 1.5873 | 200  | 0.0091        | -                                     |
| 1.6667 | 210  | 0.0232        | -                                     |
| 1.7460 | 220  | 0.0147        | -                                     |
| 1.8254 | 230  | 0.0194        | -                                     |
| 1.9048 | 240  | 0.0186        | -                                     |
| 1.9841 | 250  | 0.0141        | -                                     |
| 2.0    | 252  | -             | 0.8857                                |
| 2.0635 | 260  | 0.037         | -                                     |
| 2.1429 | 270  | 0.0401        | -                                     |
| 2.2222 | 280  | 0.0222        | -                                     |
| 2.3016 | 290  | 0.0134        | -                                     |
| 2.3810 | 300  | 0.008         | -                                     |
| 2.4603 | 310  | 0.0199        | -                                     |
| 2.5397 | 320  | 0.017         | -                                     |
| 2.6190 | 330  | 0.0164        | -                                     |
| 2.6984 | 340  | 0.0344        | -                                     |
| 2.7778 | 350  | 0.0352        | -                                     |
| 2.8571 | 360  | 0.0346        | -                                     |
| 2.9365 | 370  | 0.0256        | -                                     |
| 3.0    | 378  | -             | 0.8868                                |


### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->