judithrosell
commited on
Commit
•
66eefc1
1
Parent(s):
554b68d
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: CRAFT_PubMedBERT_NER
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# CRAFT_PubMedBERT_NER
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1043
|
19 |
+
- Seqeval classification report: precision recall f1-score support
|
20 |
+
|
21 |
+
CHEBI 0.71 0.73 0.72 616
|
22 |
+
CL 0.85 0.89 0.87 1740
|
23 |
+
GGP 0.84 0.76 0.80 611
|
24 |
+
GO 0.89 0.90 0.90 3810
|
25 |
+
SO 0.81 0.83 0.82 8854
|
26 |
+
Taxon 0.58 0.60 0.59 284
|
27 |
+
|
28 |
+
micro avg 0.82 0.84 0.83 15915
|
29 |
+
macro avg 0.78 0.79 0.78 15915
|
30 |
+
weighted avg 0.82 0.84 0.83 15915
|
31 |
+
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 2e-05
|
51 |
+
- train_batch_size: 16
|
52 |
+
- eval_batch_size: 16
|
53 |
+
- seed: 42
|
54 |
+
- gradient_accumulation_steps: 2
|
55 |
+
- total_train_batch_size: 32
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 3
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
64 |
+
| No log | 1.0 | 347 | 0.1260 | precision recall f1-score support
|
65 |
+
|
66 |
+
CHEBI 0.66 0.61 0.63 616
|
67 |
+
CL 0.81 0.86 0.83 1740
|
68 |
+
GGP 0.74 0.54 0.63 611
|
69 |
+
GO 0.86 0.89 0.87 3810
|
70 |
+
SO 0.73 0.78 0.76 8854
|
71 |
+
Taxon 0.47 0.57 0.52 284
|
72 |
+
|
73 |
+
micro avg 0.76 0.80 0.78 15915
|
74 |
+
macro avg 0.71 0.71 0.71 15915
|
75 |
+
weighted avg 0.76 0.80 0.78 15915
|
76 |
+
|
|
77 |
+
| 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support
|
78 |
+
|
79 |
+
CHEBI 0.69 0.74 0.71 616
|
80 |
+
CL 0.84 0.88 0.86 1740
|
81 |
+
GGP 0.83 0.74 0.78 611
|
82 |
+
GO 0.88 0.90 0.89 3810
|
83 |
+
SO 0.79 0.82 0.81 8854
|
84 |
+
Taxon 0.57 0.60 0.58 284
|
85 |
+
|
86 |
+
micro avg 0.81 0.84 0.82 15915
|
87 |
+
macro avg 0.77 0.78 0.77 15915
|
88 |
+
weighted avg 0.81 0.84 0.82 15915
|
89 |
+
|
|
90 |
+
| 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support
|
91 |
+
|
92 |
+
CHEBI 0.71 0.73 0.72 616
|
93 |
+
CL 0.85 0.89 0.87 1740
|
94 |
+
GGP 0.84 0.76 0.80 611
|
95 |
+
GO 0.89 0.90 0.90 3810
|
96 |
+
SO 0.81 0.83 0.82 8854
|
97 |
+
Taxon 0.58 0.60 0.59 284
|
98 |
+
|
99 |
+
micro avg 0.82 0.84 0.83 15915
|
100 |
+
macro avg 0.78 0.79 0.78 15915
|
101 |
+
weighted avg 0.82 0.84 0.83 15915
|
102 |
+
|
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.35.2
|
108 |
+
- Pytorch 2.1.0+cu118
|
109 |
+
- Datasets 2.15.0
|
110 |
+
- Tokenizers 0.15.0
|