judithrosell commited on
Commit
66eefc1
1 Parent(s): 554b68d

End of training

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: CRAFT_PubMedBERT_NER
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # CRAFT_PubMedBERT_NER
15
+
16
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.1043
19
+ - Seqeval classification report: precision recall f1-score support
20
+
21
+ CHEBI 0.71 0.73 0.72 616
22
+ CL 0.85 0.89 0.87 1740
23
+ GGP 0.84 0.76 0.80 611
24
+ GO 0.89 0.90 0.90 3810
25
+ SO 0.81 0.83 0.82 8854
26
+ Taxon 0.58 0.60 0.59 284
27
+
28
+ micro avg 0.82 0.84 0.83 15915
29
+ macro avg 0.78 0.79 0.78 15915
30
+ weighted avg 0.82 0.84 0.83 15915
31
+
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 2e-05
51
+ - train_batch_size: 16
52
+ - eval_batch_size: 16
53
+ - seed: 42
54
+ - gradient_accumulation_steps: 2
55
+ - total_train_batch_size: 32
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 3
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
64
+ | No log | 1.0 | 347 | 0.1260 | precision recall f1-score support
65
+
66
+ CHEBI 0.66 0.61 0.63 616
67
+ CL 0.81 0.86 0.83 1740
68
+ GGP 0.74 0.54 0.63 611
69
+ GO 0.86 0.89 0.87 3810
70
+ SO 0.73 0.78 0.76 8854
71
+ Taxon 0.47 0.57 0.52 284
72
+
73
+ micro avg 0.76 0.80 0.78 15915
74
+ macro avg 0.71 0.71 0.71 15915
75
+ weighted avg 0.76 0.80 0.78 15915
76
+ |
77
+ | 0.182 | 2.0 | 695 | 0.1089 | precision recall f1-score support
78
+
79
+ CHEBI 0.69 0.74 0.71 616
80
+ CL 0.84 0.88 0.86 1740
81
+ GGP 0.83 0.74 0.78 611
82
+ GO 0.88 0.90 0.89 3810
83
+ SO 0.79 0.82 0.81 8854
84
+ Taxon 0.57 0.60 0.58 284
85
+
86
+ micro avg 0.81 0.84 0.82 15915
87
+ macro avg 0.77 0.78 0.77 15915
88
+ weighted avg 0.81 0.84 0.82 15915
89
+ |
90
+ | 0.0443 | 3.0 | 1041 | 0.1043 | precision recall f1-score support
91
+
92
+ CHEBI 0.71 0.73 0.72 616
93
+ CL 0.85 0.89 0.87 1740
94
+ GGP 0.84 0.76 0.80 611
95
+ GO 0.89 0.90 0.90 3810
96
+ SO 0.81 0.83 0.82 8854
97
+ Taxon 0.58 0.60 0.59 284
98
+
99
+ micro avg 0.82 0.84 0.83 15915
100
+ macro avg 0.78 0.79 0.78 15915
101
+ weighted avg 0.82 0.84 0.83 15915
102
+ |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.35.2
108
+ - Pytorch 2.1.0+cu118
109
+ - Datasets 2.15.0
110
+ - Tokenizers 0.15.0