judithrosell commited on
Commit
946ef85
1 Parent(s): f654d32

End of training

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: JNLPBA_PubMedBERT_NER
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # JNLPBA_PubMedBERT_NER
15
+
16
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.1450
19
+ - Seqeval classification report: precision recall f1-score support
20
+
21
+ DNA 0.75 0.83 0.79 955
22
+ RNA 0.80 0.83 0.82 1144
23
+ cell_line 0.76 0.79 0.78 5330
24
+ cell_type 0.86 0.91 0.88 2518
25
+ protein 0.87 0.85 0.86 926
26
+
27
+ micro avg 0.80 0.83 0.81 10873
28
+ macro avg 0.81 0.84 0.82 10873
29
+ weighted avg 0.80 0.83 0.81 10873
30
+
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 2e-05
50
+ - train_batch_size: 16
51
+ - eval_batch_size: 16
52
+ - seed: 42
53
+ - gradient_accumulation_steps: 2
54
+ - total_train_batch_size: 32
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
62
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
63
+ | 0.2726 | 1.0 | 582 | 0.1526 | precision recall f1-score support
64
+
65
+ DNA 0.73 0.82 0.77 955
66
+ RNA 0.79 0.82 0.81 1144
67
+ cell_line 0.75 0.78 0.76 5330
68
+ cell_type 0.86 0.86 0.86 2518
69
+ protein 0.86 0.84 0.85 926
70
+
71
+ micro avg 0.79 0.81 0.80 10873
72
+ macro avg 0.80 0.82 0.81 10873
73
+ weighted avg 0.79 0.81 0.80 10873
74
+ |
75
+ | 0.145 | 2.0 | 1164 | 0.1473 | precision recall f1-score support
76
+
77
+ DNA 0.73 0.82 0.77 955
78
+ RNA 0.85 0.78 0.81 1144
79
+ cell_line 0.77 0.78 0.78 5330
80
+ cell_type 0.85 0.92 0.88 2518
81
+ protein 0.88 0.83 0.85 926
82
+
83
+ micro avg 0.80 0.82 0.81 10873
84
+ macro avg 0.81 0.83 0.82 10873
85
+ weighted avg 0.80 0.82 0.81 10873
86
+ |
87
+ | 0.1276 | 3.0 | 1746 | 0.1450 | precision recall f1-score support
88
+
89
+ DNA 0.75 0.83 0.79 955
90
+ RNA 0.80 0.83 0.82 1144
91
+ cell_line 0.76 0.79 0.78 5330
92
+ cell_type 0.86 0.91 0.88 2518
93
+ protein 0.87 0.85 0.86 926
94
+
95
+ micro avg 0.80 0.83 0.81 10873
96
+ macro avg 0.81 0.84 0.82 10873
97
+ weighted avg 0.80 0.83 0.81 10873
98
+ |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.35.2
104
+ - Pytorch 2.1.0+cu118
105
+ - Datasets 2.15.0
106
+ - Tokenizers 0.15.0