File size: 2,388 Bytes
4cae850 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
license: mit
base_model: m3rg-iitd/matscibert
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: MatSciBERT_ST_DA_1000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MatSciBERT_ST_DA_1000
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1669
- Precision: 0.8484
- Recall: 0.8572
- F1: 0.8528
- Accuracy: 0.9724
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 495 | 0.1097 | 0.8373 | 0.8310 | 0.8341 | 0.9692 |
| 0.1746 | 2.0 | 990 | 0.0968 | 0.8355 | 0.8550 | 0.8452 | 0.9720 |
| 0.0592 | 3.0 | 1485 | 0.1072 | 0.8405 | 0.8497 | 0.8451 | 0.9711 |
| 0.0316 | 4.0 | 1980 | 0.1302 | 0.8451 | 0.8468 | 0.8459 | 0.9709 |
| 0.017 | 5.0 | 2475 | 0.1426 | 0.8381 | 0.8448 | 0.8415 | 0.9702 |
| 0.0102 | 6.0 | 2970 | 0.1503 | 0.8456 | 0.8470 | 0.8463 | 0.9711 |
| 0.0058 | 7.0 | 3465 | 0.1528 | 0.8466 | 0.8509 | 0.8487 | 0.9721 |
| 0.0035 | 8.0 | 3960 | 0.1565 | 0.8459 | 0.8521 | 0.8490 | 0.9719 |
| 0.0027 | 9.0 | 4455 | 0.1592 | 0.8531 | 0.8562 | 0.8547 | 0.9728 |
| 0.0017 | 10.0 | 4950 | 0.1669 | 0.8484 | 0.8572 | 0.8528 | 0.9724 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|