--- library_name: transformers license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_ST_DA_1000 results: [] --- # MatSciBERT_ST_DA_1000 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1669 - Precision: 0.8484 - Recall: 0.8572 - F1: 0.8528 - Accuracy: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 495 | 0.1097 | 0.8373 | 0.8310 | 0.8341 | 0.9692 | | 0.1746 | 2.0 | 990 | 0.0968 | 0.8355 | 0.8550 | 0.8452 | 0.9720 | | 0.0592 | 3.0 | 1485 | 0.1072 | 0.8405 | 0.8497 | 0.8451 | 0.9711 | | 0.0316 | 4.0 | 1980 | 0.1302 | 0.8451 | 0.8468 | 0.8459 | 0.9709 | | 0.017 | 5.0 | 2475 | 0.1426 | 0.8381 | 0.8448 | 0.8415 | 0.9702 | | 0.0102 | 6.0 | 2970 | 0.1503 | 0.8456 | 0.8470 | 0.8463 | 0.9711 | | 0.0058 | 7.0 | 3465 | 0.1528 | 0.8466 | 0.8509 | 0.8487 | 0.9721 | | 0.0035 | 8.0 | 3960 | 0.1565 | 0.8459 | 0.8521 | 0.8490 | 0.9719 | | 0.0027 | 9.0 | 4455 | 0.1592 | 0.8531 | 0.8562 | 0.8547 | 0.9728 | | 0.0017 | 10.0 | 4950 | 0.1669 | 0.8484 | 0.8572 | 0.8528 | 0.9724 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1