--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: PubMedBERT_CRAFT_NER_new results: [] --- # PubMedBERT_CRAFT_NER_new This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1034 - Precision: 0.9811 - Recall: 0.9782 - F1: 0.9797 - Accuracy: 0.9751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2176 | 1.0 | 695 | 0.1101 | 0.9780 | 0.9739 | 0.9759 | 0.9708 | | 0.0555 | 2.0 | 1390 | 0.1019 | 0.9800 | 0.9770 | 0.9785 | 0.9739 | | 0.0283 | 3.0 | 2085 | 0.1034 | 0.9811 | 0.9782 | 0.9797 | 0.9751 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0