--- library_name: transformers license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ST_CEMS results: [] --- # ST_CEMS This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9368 - Recall: 0.9226 - F1: 0.9296 - Accuracy: 0.9898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0492 | 1.0 | 569 | 0.0347 | 0.9181 | 0.9091 | 0.9136 | 0.9881 | | 0.0177 | 2.0 | 1138 | 0.0331 | 0.9406 | 0.9177 | 0.9290 | 0.9905 | | 0.0109 | 3.0 | 1707 | 0.0454 | 0.9116 | 0.9122 | 0.9119 | 0.9876 | | 0.0066 | 4.0 | 2276 | 0.0454 | 0.9596 | 0.8970 | 0.9272 | 0.9896 | | 0.0042 | 5.0 | 2845 | 0.0477 | 0.9352 | 0.9061 | 0.9204 | 0.9889 | | 0.0027 | 6.0 | 3414 | 0.0525 | 0.9352 | 0.9146 | 0.9248 | 0.9896 | | 0.0018 | 7.0 | 3983 | 0.0498 | 0.9405 | 0.9159 | 0.9280 | 0.9899 | | 0.0008 | 8.0 | 4552 | 0.0555 | 0.9312 | 0.9238 | 0.9275 | 0.9896 | | 0.0007 | 9.0 | 5121 | 0.0602 | 0.9406 | 0.9165 | 0.9284 | 0.9897 | | 0.0006 | 10.0 | 5690 | 0.0598 | 0.9368 | 0.9226 | 0.9296 | 0.9898 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1